Scientia Marina, Vol 81, No 2 (2017)

Marinas as habitats for nearshore fish assemblages: comparative analysis of underwater visual census, baited cameras and fish traps


https://doi.org/10.3989/scimar.04540.20A

Néstor E. Bosch
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria - Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Spain
orcid http://orcid.org/0000-0003-0421-8456

Jorge M.S. Gonçalves
Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Portugal
orcid http://orcid.org/0000-0001-7704-8190

Fernando Tuya
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
orcid http://orcid.org/0000-0001-8316-5887

Karim Erzini
Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Portugal
orcid http://orcid.org/0000-0002-1411-0126

Abstract


Understanding the ecological role that artificial structures might play on nearshore fish assemblages requires the collection of accurate and reliable data through efficient sampling techniques. In this work, differences in the composition and structure of fish assemblages between the inner and outer sides of three marinas located in the temperate northern-eastern Atlantic Ocean were tested using three complementary sampling techniques: underwater visual censuses (UVC), baited cameras (BCs) and fish traps (FTs). UVCs and BCs recorded a comparable number and relative abundance of species, which in turn were much greater than those recorded by FTs. This finding supports the use of UVCs and BCs over FTs for broad ecologically studies, especially when dealing with structurally complex habitats such as artificial structures. We found differences in fish assemblage structure between the inner and outer sides of marinas, independently of the sampling method. Four small-sized species (Similiparma lurida, Thalassoma pavo, Sarpa salpa and Symphodus roissali) associated with structurally complex vegetated habitats dominated, in terms of abundance, the outer sides of marinas; Diplodus vulgaris, Diplodus sargus and Gobius niger, species with high ecological plasticity in habitat requirements, dominated the inner sides of marinas. The information provided in this study is of great interest for developing sound monitoring programmes to ascertain the effects of artificial structures on fish communities.

Keywords


coastal development; marinas; habitat loss; fish assemblages; sampling methods; sampling efficiencies

Full Text:


HTML PDF XML

References


Airoldi L., Beck M.W. 2007. Loss, status and trends for coastal marine habitats of Europe. In: Gibson R.N., Atkinson R.J.A., Gordon J.D.M. (eds), Oceanography and marine biology, Vol 45. CRC Press-Taylor and Francis Group, Boca Raton, FL, pp. 345-405.

Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26: 32-46.

Bacheler N.M., Schobernd C.M., Schobernd Z.H., et al. 2013. Comparison of trap and underwater video gears for indexing reef fish presence and abundance in the southeast United States. Fish. Res. 143: 81-88. https://doi.org/10.1016/j.fishres.2013.01.013

Bohnsack J.A. 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioural preferences? Bull. Mar. Sci. 44: 631-645.

Bouchoucha M., Darnaude A.M., Gudefin A., et al. 2016. Potential use of marinas as nursery grounds by rocky fishes: insights from four Diplodus species in the Mediterranean. Mar. Ecol. Prog. Ser. 547: 193-209. https://doi.org/10.3354/meps11641

Cappo M., Harvey E., Shortis M. 2006. "Counting and measuring fish with baited video techniques - an overview". Australian Society for Fish Biology; 2006 Workshops Proceedings. Australia.

Carr M.H., Hixon M.A. 1997. Artificial reefs: the importance of comparisons with natural reefs. Fisheries 22: 28-33. https://doi.org/10.1577/1548-8446(1997)022<0028:ARTIOC>2.0.CO;2

Cenci E., Pizzolon M., Chimento N., et al. 2011. The influence of a new artificial structure on fish assemblages of adjacent hard substrata. Est. Coast. Shelf. Sci. 91: 133?149. https://doi.org/10.1016/j.ecss.2010.10.009

Chambers J.M., Hastie T.J. 1993. Statistical models in S. Chapman and Hall.

Clarke K.R., Warwick R.M. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth.

Clarke K.R., Somerfield P.J., Chapman M.G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330: 55-80. https://doi.org/10.1016/j.jembe.2005.12.017

Clynick B.G. 2006. Assemblages of fish associated with coastal marinas in north-western Italy. J. Mar. Biol. Assoc. UK. 86: 847-852. https://doi.org/10.1017/S0025315406013786

Clynick B.G. 2008. Characteristics of an urban fish assemblage: distribution of fish associated with coastal marinas. Mar. Environ. Res. 65: 18-33. https://doi.org/10.1016/j.marenvres.2007.07.005 PMid:17884158

Clynick B.G., Chapman M.G., Underwood A.J. 2007. Effects of epibiota on assemblages of fish associated with urban structures. Mar. Ecol. Prog. Ser. 332: 201-210. https://doi.org/10.3354/meps332201

Colton M.A., Swearer S.E. 2010. A comparison of two survey methods: differences between underwater visual census and baited remote underwater video. Mar. Ecol. Prog. Ser. 400: 19-36. https://doi.org/10.3354/meps08377

Connell S.D., Glasby T.M. 1999. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47: 373-387. https://doi.org/10.1016/S0141-1136(98)00126-3

Courrat A., Lobry J., Nicolas D., et al. 2009. Anthropogenic disturbance on nursery function of estuarine areas for marine species. Est. Coast. Shelf. Sci. 81: 179-190. https://doi.org/10.1016/j.ecss.2008.10.017

da Cunha P.L., Antunes M.M. 2008. Notes on Gobiidae (Teleostei) from soft bottoms of the Portuguese coast. Cybium 32: 309-315.

Edgar G.J., Barrett N.S., Morton A.J. 2004. Biases associated with the use of underwater visual census techniques to quantify fish density and size-structure. J. Exp. Mar. Biol. Ecol. 308: 269-290. https://doi.org/10.1016/j.jembe.2004.03.004

García-Mederos A.M., Tuya F., Tuset V.M. 2016. Life-history strategies of a conspicuous reef fish, the Canary damsel Similiparma lurida (Pomacentridae) in the northeastern Atlantic. Sci. Mar. 80: 57-68.

Gonçalves J.M.S., Bentes L., Coelho R., et al. 2003. Age and growth, maturity, mortality and yield-per-recruit for two banded bream (Diplodus vulgaris Geoffr.) from the south coast of Portugal. Fish. Res. 62: 349-359. https://doi.org/10.1016/S0165-7836(02)00280-1

González J.A., Pajuelo J.G., Lorenzo J.M., et al. 2012. Talla mínima de captura: peces, crustáceos y moluscos de interés pesquero en Canarias: una propuesta científica para su conservación. Consejería de Agricultura, Ganadería Pesca y Alimentación, 248 pp.

Guidetti P. 2004. Fish assemblages associated with coastal defence structures in south-western Italy (Mediterranean Sea). J. Mar. Biol. Assoc. UK. 84: 669-670. https://doi.org/10.1017/S0025315404009725h

Halpern B.S., Walbridge S., Selkoe K.A., et al. 2008. A global map of human impact on marine ecosystems. Science 319: 948-952. https://doi.org/10.1126/science.1149345 PMid:18276889

Harmelin-Vivien M.L.,Harmelin J.G., Chauvet C., et al. 1985. Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Rev. Ecol. Terre Vie 40: 467-539.

Harvey E.S., Shortis M., Stadler M., et al. 2002. A comparison of the accuracy and precision of measurements from single and stereo-video systems. Mar. Tech. Soc. J. 36: 38-49. https://doi.org/10.4031/002533202787914106

Harvey E.S., Newman S.J., McLean D.L., et al. 2012. Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish. Res. 125: 108-120. https://doi.org/10.1016/j.fishres.2012.01.026

Jones G.P. 1984. Population ecology of the temperate reef fish Pseudolabrus celidotus Bloch and Schneider (Pisces: Labridae). I. Factors influencing recruitment. J. Exp. Mar. Biol. Eco1. 75: 257-276.

Langlois T.J., Harvey E.S., Fitzpatrick B., et al. 2010. Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat. Biol. 9: 155-168. https://doi.org/10.3354/ab00235

Leathwick J.R., Elith J., Hastie T. 2006. Comparative performance of generalised additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199: 188-196. https://doi.org/10.1016/j.ecolmodel.2006.05.022

Lincoln-Smith M.P., Bell J.D., Hair C.A. 1991. Spatial variation in abundance of recently settled rocky reef fish in southeastern Australia: implications for detecting change. Mar. Ecol. Prog. Ser. 77: 95-103. https://doi.org/10.3354/meps077095

Lowry M., Folpp H., Gregson M., et al. 2012. Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assessment of artificial reefs in estuaries. J. Exp. Mar. Biol. Ecol. 416: 243-253. https://doi.org/10.1016/j.jembe.2012.01.013

Monteiro C., Lam Hoai T., Lasserre G. 1987. Distribution chronologique des poissons dans deux stations de la lagune Ria Formosa (Portugal). Oceanol. Acta 10: 359-371.

Murphy H.M., Jenkins G.P. 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Mar. Freshw. Res. 61: 236-252. https://doi.org/10.1071/MF09068

Ohlhorst S.L., Liddell W.D., Taylor R.J., et al. 1988. Evaluation of reef census techniques. Proc. 6th Intl. Coral Reef. Symp. 2: 319-324. Townsville, Australia.

Pastor J., Koeck B., Astruch P., et al. 2013. Coastal man-made habitats: potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148: 74-80. https://doi.org/10.1016/j.fishres.2013.08.014

Peirano A., Niccolai I., Mauro R., et al. 2001. Seasonal grazing and food preference of herbivores in a Posidonia oceanica meadow. Sci. Mar. 65: 367-374. https://doi.org/10.3989/scimar.2001.65n4367

Pizzolon M., Cenci E., Mazzoldi C. 2008. The onset of fish colonization in a coastal defence structure (Chioggia, Northern Adriatic Sea). Est. Coast. Shelf. Sci. 78: 166-178. https://doi.org/10.1016/j.ecss.2007.11.014

Rilov G., Benayahu Y. 2000. Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective. Mar. Biol. 136: 931-942. https://doi.org/10.1007/s002279900250

Scharf F.S., Manderson J.P., Fabrizio M.C. 2006. The effects of sea-floor habitat complexity on survival of juvenile fishes: Species-specific interactions with structural refuge. J. Exp. Mar. Biol. Ecol. 335: 167-176. https://doi.org/10.1016/j.jembe.2006.03.018

Seitz R.D., Wennhage H., Bergström U., et al. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES. J. Mar. Sci. 71: 648-665. https://doi.org/10.1093/icesjms/fst152

Steneck R.S., Dethier M.N. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476-498. https://doi.org/10.2307/3545860

Stobart B, Garcia-Charton J.A., Espejo C., et al. 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. J. Exp. Mar. Biol. Ecol. 345: 158-174. https://doi.org/10.1016/j.jembe.2007.02.009

Tuya F., Haroun R.J. 2006. Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian Archipelago: a multi-scaled approach. Mar. Ecol. Prog. Ser. 311: 15-28. https://doi.org/10.3354/meps311015

Tuya F., Boyra A., Sanchez-Jerez P., et al. 2005. Multivariate analysis of the bentho-demersal ichthyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms beneath sea-cage fish farms. Mar. Biol. 147: 1229-1237. https://doi.org/10.1007/s00227-005-0018-1

Tuya F., Wernberg T., Thomsen M.S. 2011. The relative influence of local to regional drivers of variation in reef fishes. J. Fish. Biol. 79: 217-234. https://doi.org/10.1111/j.1095-8649.2011.03015.x PMid:21722121

Underwood A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Annu. Rev. 19: 513-605.

Ventura D., Jona Lasinio G., Ardizzone G. 2014. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36: 1-20.

Wakefield C.B., Lewis P.D., Coutts T.B., et al. 2013. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps. PloS ONE 8: e59959. https://doi.org/10.1371/journal.pone.0059959 PMid:23555847 PMCid:PMC3605449

Watson D.L., Harvey E.S., Anderson M.J., et al. 2005. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148: 415-425. https://doi.org/10.1007/s00227-005-0090-6




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es