Variability of macrofauna distribution along a dissipative log-spiral sandy beach in Rio de Janeiro, Southeastern Brazil

Authors

  • Carlos A.M. Barboza Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro https://orcid.org/0000-0002-5922-5410
  • Tatiana Cabrini Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Programa de Pós-graduação em Ecologia, Universidade Federal do Rio de Janeiro (UFRJ) https://orcid.org/0000-0003-2006-7328
  • Gustavo Mattos Programa de Pós-graduação em Ecologia, Universidade Federal do Rio de Janeiro (UFRJ) https://orcid.org/0000-0003-3677-4190
  • Viviane Skinner Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) https://orcid.org/0000-0003-1343-4214
  • Ricardo Cardoso Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) https://orcid.org/0000-0002-8692-0283

DOI:

https://doi.org/10.3989/scimar.04467.03A

Keywords:

macrofauna assemblage, curved beaches, mesoscale, intertidal, morphodynamic, physical gradient

Abstract


Log-spiral beaches display defined physical gradients alongshore. However, the majority of studies focus on the variability of a single population of macrofauna species. We aimed to investigate the variation in species distribution and in community structure along ten transects on a log-spiral beach. Principal component analysis indicated a clear physical gradient alongshore. Redundancy analysis showed that the sheltered end was related to smaller particle sizes, higher organic matter content and high densities of polychaetes. The exposed end was characterized by coarser sand, lower organic matter content and a high presence of crustaceans. Model selection indicated that the “best fit” to explain the variability in the number of individuals included grain size and beach slope. Variability of the polychaete Scolelepis squamata was best explained by grain size, slope and sediment sorting. The best model for the cirolanid Excirolana armata only included sediment sorting. The physical gradient in sediment texture and the beach slope explained more than one-third of the variability in community structure. The physical variables were also correlated with the distribution of the individual species. We showed that the physical gradient on log-spiral coasts may be an important driver of macrofauna variability, even at mesoscales and in dissipative conditions.

Downloads

Download data is not yet available.

References

Ansell A.D. 1983. The biology of the genus Donax. In: McLachlan A., Erasmus T. (eds) Proceedings of Sandy beaches as ecosystems (Port Elizabeth, South Africa), pp. 607-636. https://doi.org/10.1007/978-94-017-2938-3_46

Barboza R.B., Defeo O. 2015. Global diversity patterns in sandy beach macrofauna: a biogeographic analysis. Sci. Rep. 5: 14515. https://doi.org/10.1038/srep14515 PMid:26411697 PMCid:PMC4585946

Barboza C.A.M., Martins C.C., Lana P. 2015. Dissecting the distribution of brittle stars along a sewage pollution gradient indicated by organic markers. Mar. Pollut. Bull. 100: 438-444. https://doi.org/10.1016/j.marpolbul.2015.08.008 PMid:26323862

Barton K. 2014. MuMIn: Multi-ModelInference. R Package Version 1.10.0.

Brazeiro A., 1999. Community patterns in sandy beaches of Chile: richness, composition, distribution and abundance of species. Rev. Chil. Hist. Nat. 72: 93-105.

Brazeiro A. 2001. Relationship between species richness and morphodynamics in sandy beaches: what are the underlying factors? Mar. Ecol. Prog. Ser. 224: 35-44. https://doi.org/10.3354/meps224035

Bremmer J.M. 1983. Properties of Logarithmic Spiral Beaches with Particular Reference to Algoa Bay. In: McLachlan A., Erasmus T. (eds) Proceedings of Sandy beaches as ecosystems (Port Elizabeth, South Africa), pp. 97-113. https://doi.org/10.1007/978-94-017-2938-3_6

Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practice Information-Theoretic Approach. Springer, New York, 488 pp.

Cardoso S.R., Mattos G., Caetano C.H.S., et al. 2012. Effects of environmental gradients on sandy beach macrofauna of a semienclosed bay. Mar. Ecol. 33: 106-116. https://doi.org/10.1111/j.1439-0485.2011.00457.x

Chapman M.G., Tolhurst T.J., Murphy R.J., et al. 2010. Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar. Ecol. Prog. Ser. 398: 33-47. https://doi.org/10.3354/meps08328

Coyle J.M., Dethier M.N. 2010. Review of shoreline armoring literature, In: Shipman H., Dethier M.N., Gelfenbaum G., et al. (eds). Puget Sound Shorelines and the Impacts of Armoring- Proceedings of a State of the Science Workshop (Richland, Washington), pp. 239-258.

Dahl E. 1952. Some aspects of the ecology and zonation of the fauna of sandy beaches. Oikos 4: 1-27. https://doi.org/10.2307/3565072

Dauer D.M. 1983. Functional morphology and feeding behavior of Scolelepis squamata (Polychaeta: Spionidae). Mar. Biol. 77: 279-285. https://doi.org/10.1007/BF00395817

Defeo O., de Alava A. 1995. Effects of human activities on long-term trends in sandy beach populations: the wedge clam Donax hanleyanus in Uruguay. Mar. Ecol. Prog. Ser. 123: 73-82. https://doi.org/10.3354/meps123073

Defeo O., McLachlan A. 2005. Patterns, process and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar. Ecol. Prog. Ser. 295: 1-20. https://doi.org/10.3354/meps295001

Defeo O., Rueda M. 2002. Spatial structure, sampling design and abundance estimates in sandy beach macroinfauna: some warnings and new perspectives. Mar. Biol. 140: 1215-1225. https://doi.org/10.1007/s00227-002-0783-z

Defeo O., Gómez J., Lercari D. 2001. Testing the swash exclusion hypothesis in sandy beach populations: the mole crab Emerita brasiliensis in Uruguay. Mar. Ecol. Prog. Ser. 212: 159-170. https://doi.org/10.3354/meps212159

Defeo O., Lercari D., Gómez J. 2003. The role of morphodynamics in structuring sandy beach populations and communities: what should be expected? J. Coast. Res. 59: 352-362.

Degraer S., Volckaert A., Vincx M. 2003. Macrobenthic zonation patterns along a morphodynamical continuum of macrotidal, low bar/rip and ultradissipative sandy beaches. Est. Coast Shelf Sci. 56: 459-468. https://doi.org/10.1016/S0272-7714(02)00195-6

Donn T.E. 1987. Longshore distribution of Donax serra in two log-spiral bays in the eastern Cape, South Africa. Mar. Ecol. Prog. Ser. 35: 217-222. https://doi.org/10.3354/meps035217

Dugan J.E., Hubbard D.M. 2010. Ecological effects of coastal ar moring: A summary of recent results for exposed sandy beaches in southern California. In: Shipman H., Dethier M.N., Gelfenbaum G., et al. (eds). Puget Sound Shorelines and the Impacts of Armoring. Proceedings of a State of the Science Workshop (Richland, Washington), pp. 187-194.

Emery K.O. 1961. A simple method of measuring beach profiles. Limnol. Oceanogr. 6: 90-93. https://doi.org/10.4319/lo.1961.6.1.0090

Fernandes R.S.R., Soares-Gomes A. 2006. Community structure of macrobenthos in two tropical sandy beaches with different morphodynamic features, Rio de Janeiro, Brazil. Mar. Ecol. 27: 160-169. https://doi.org/10.1111/j.1439-0485.2006.00093.x

Folk R.L., Ward W.C. 1957. Brazos river bar: a study in the significance of grain size parameters. J. Sediment Petrol 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Fragoso M. 1999. Estudo numérico da circulação marinha da região das Baías de Sepetiba e Ilha Grande (RJ). Master thesis. Universidade de São Paulo, 115 pp.

Gandara-Martins A.L., Borzone C.A., Guilherme P.D.B., et al. 2014. Spatial Effects of a Washout on Sandy Beach Macrofauna Zonation and Abundance. J. Coast. Res. 31: 1459-1468.

Giménez L., Yannicelli B. 2000. Longshore patterns of distribution of macroinfauna on a Uruguayan sandy beach: an analysis at different spatial scales and of their potential causes. Mar. Ecol. Prog. Ser. 199: 111-125. https://doi.org/10.3354/meps199111

Gray J.S. 1981. The ecology of marine sediments: an introduction to the structure and function of benthic communities. Cambridge University Press, Cambridge, 225 pp.

Gray J.S. 2002. Species richness of marine soft sediments. Mar. Ecol. Prog. Ser. 244: 285-297. https://doi.org/10.3354/meps244285

Harris L., Campbell E.E., Nel R., et al. 2014. Rich diversity, strong endemism, but poor protection: addressing the neglect of sandy beach ecosystems in coastal conservation planning. Divers. Distrib. 20: 1120-1135. https://doi.org/10.1111/ddi.12226

Jaramillo E., Lastra M. 2001. Suspension feeders on sandy beaches. In: Reise K. (ed.), Ecological Comparisons of Sedimentary Shores. Ecological Studies 151. Springer, pp. 61-72. https://doi.org/10.1007/978-3-642-56557-1_4

Lastra M., McLachlan A. 1996. Spatial and temporal variations in recruitment of Donax serra Röding (Bivalvia: Donacidae) on an exposed sandy beach of South Africa. Rev. Chil. Hist. Nat. 69: 631-639.

LeBlond P.H. 1979. An Explanation of the Logarithmic Spiral Plan Shape of Headland-Bay Beaches. J. Sed. Petrol. 49: 1093-1100.

Legendre P., Gallegher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280. https://doi.org/10.1007/s004420100716

Lercari D., Defeo O. 2003 Variation of a sandy beach macrobenthic community along a human-induced environmental gradient. Est. Coast. Shelf Sci. 58: 17-24. https://doi.org/10.1016/S0272-7714(03)00043-X

Lozoya J.P., Gómez J., Defeo O. 2010. Modelling large-scale effects of estuarine and morphodynamic gradients on distribution and abundance of the sandy beach isopod Excirolana armata. Est. Coast. Shelf Sci. 87: 472-478. https://doi.org/10.1016/j.ecss.2010.02.005

McLachlan A. 1983. Sandy beach ecology: a review. In: McLachlan A., Erasmus T. (eds) Proceedings of Sandy beaches as ecosystems (Port Elizabeth, South Africa), pp. 321-380. https://doi.org/10.1007/978-94-017-2938-3_25

McLachlan A. 1990. Dissipative beaches and macrofauna communities on exposed intertidal sands. J. Coast. Res. 6: 57-71.

McLachlan A. 1996. Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Mar. Ecol. Prog. Ser. 131: 205-217. https://doi.org/10.3354/meps131205

McLachlan A. 2001. Coastal beach ecosystems. In: Lewin R. (ed.), Encyclopedia of Biodiversity. Academic Press, pp. 741-751. https://doi.org/10.1016/B0-12-226865-2/00051-1

McLachlan A., Brown A.C. 2006. The Ecology of Sandy Shores. Academic Press, Burlington. 373 pp.

McLachlan A., Dorvlo A. 2005. Global patterns in sandy beach macrobenthic communities. J. Coast. Res. 21: 674-687. https://doi.org/10.2112/03-0114.1

McLachlan A., Hesp D. 1984. Faunal response to morphology and water circulation of a sandy beach with cusp. Mar. Ecol. Prog. Ser. 19: 133-144. https://doi.org/10.3354/meps019133

McLachlan A., Jaramillo E. 1995. Zonation on sandy beaches. Oceanogr. Mar. Biol. Ann. Rev. 33: 305-335.

Oksanen J., Blanchet F.G., Kindt R., et al. 2015. vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan

Petracco M., Cardoso R.S., Corbisier T.N. 2010. Population biology of Excirolana armata (Dana, 1853) (Isopoda, Cirolanidae) on an exposed sandy beach in Southeastern Brazil. Mar. Ecol. 31: 330-340. https://doi.org/10.1111/j.1439-0485.2009.00341.x

R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

Rao C.R. 1964. The use and interpretation of principal component analysis in applied research. Sankhy?: Indian J. Stat. A 26: 329-358.

Rodil I.F., Compton T.J., Lastra M. 2012. Exploring Macroinvertebrate Species Distributions at Regional and Local Scales across a Sandy Beach Geographic Continuum. PLoS ONE 7: e39609. https://doi.org/10.1371/journal.pone.0039609 PMid:22761841 PMCid:PMC3382464

Salvat B. 1964. Les conditions hydrodynamics interstitielles des sediments meubles intertidaux et la repartition de la fauna endogee. C. R. Acad. Sci. 259: 1576-1579.

Schoeman D.S., Richardson A.J. 2002. Investigating biotic and abiotic factors affecting recruitment of an intertidal clam on an exposed sandy beach using a generalized additive model. J. Exp. Mar. Biol. Ecol. 276: 67-81. https://doi.org/10.1016/S0022-0981(02)00239-3

Schlacher T.A., Thompson L. 2013. Spatial structure on ocean-exposed sandy beaches: faunal zonation metrics and their variability. Mar. Ecol. Prog. Ser. 478: 43-55. https://doi.org/10.3354/meps10205

Schlacher T.A., Schoeman D.S., Dugan J., et al. 2008. Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar. Ecol. 29: 70-90. https://doi.org/10.1111/j.1439-0485.2007.00204.x

Signorini S.R. 1980. A Study of The Circulation in Bay of Ilha Grande and Bay of Sepetiba Part I, A Survey of the Circulation Based on Experimental Field Data. Bol. Inst. Oceanogr. 29: 41-55. https://doi.org/10.1590/S0373-55241980000100004

Venables W.N., Ripley B.D. 2002. Modern Applied Statistics with S. Springer, New York, 495 pp. https://doi.org/10.1007/978-0-387-21706-2

Wiens J.A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385-397. https://doi.org/10.2307/2389612

Zuur A.F., Ieno E.N., Walker N.J., et al. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York. 574 pp. https://doi.org/10.1007/978-0-387-87458-6

Published

2017-03-30

How to Cite

1.
Barboza CA, Cabrini T, Mattos G, Skinner V, Cardoso R. Variability of macrofauna distribution along a dissipative log-spiral sandy beach in Rio de Janeiro, Southeastern Brazil. Sci. mar. [Internet]. 2017Mar.30 [cited 2024Apr.20];81(1):111-20. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1702

Issue

Section

Articles