Scientia Marina, Vol 81, No 1 (2017)

Cost-benefit of three different methods for studying Mediterranean rocky benthic assemblages


https://doi.org/10.3989/scimar.04463.04A

Natàlia Sant
Centre d’Estudis Avançats de Blanes – Consell Superior d’Investigacions Científiques (CEAB-CSIC) , Spain
orcid http://orcid.org/0000-0002-5660-0131

Eglantine Chappuis
Centre d’Estudis Avançats de Blanes – Consell Superior d’Investigacions Científiques (CEAB-CSIC) , Spain
orcid http://orcid.org/0000-0003-1601-6683

Conxi Rodríguez-Prieto
Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona (UdG) , Spain
orcid http://orcid.org/0000-0003-4935-1250

Montserrat Real
AECOM URS España SLU , Spain
orcid http://orcid.org/0000-0001-7357-6789

Enric Ballesteros
Centre d’Estudis Avançats de Blanes – Consell Superior d’Investigacions Científiques (CEAB-CSIC) , Spain
orcid http://orcid.org/0000-0001-5532-5337

Abstract


Here we compare the applicability, the information provided and the cost-benefit of three sampling methods usually used in the study of rocky benthic assemblages. For comparative purposes, sampling was performed seasonally and along a depth gradient (0-50 m) in the Cabrera Archipelago (western Mediterranean). The destructive scraping (collection) method was the least cost-effective but provided the best qualitative and quantitative information. The in situ visual method was the most time-effective but provided low levels of taxonomic resolution and its accuracy decreased with depth due to the increasing difficulty of recognizing species in situ due to nitrogen narcosis, reduced light and cold. The photoquadrat method showed intermediate values of cost-effectiveness and information but was not suitable for multilayered assemblages, as it only accounted for the overstory. A canonical correspondence analysis showed that depth was highlighted as the main environmental gradient (16.0% of variance) by the three methods. However, differences due to the sampling method (7.9% of variance) were greater than differences due to temporal variability (5.8% of variance), suggesting that the three methods are valid but their selection has to be carefully assessed in relation to the targeted assemblages and the specific goals of each study.

Keywords


rocky benthic assemblages; destructive and non-destructive sampling methods; photoquadrats; depth gradient; seasonality

Full Text:


HTML PDF XML

References


Airoldi L., Rindi F., Cinelli F. 1995. Structure, seasonal dynamics and reproductive phenology of a filamentous turf assemblage on a sediment influenced, rocky subtidal shore. Bot. Mar. 38: 227-237. https://doi.org/10.1515/botm.1995.38.1-6.227

Ballesteros E. 1992. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Institut d'Estudis Catalans, Barcelona, 616 pp.

Ballesteros E. 1996. Un método rápido y efectivo para la elaboración de inventarios en el bentos marino sobre sustrato rocoso. Algas 16: 8-9.

Ballesteros E., Sala E., Garrabou J., et al. 1998. Community structure and frond size distribution of a deep water stand of Cystoseira spinosa (Phaeophyta) in the northwestern Mediterranean. Eur. J. Phycol. 33: 121-128. https://doi.org/10.1080/09670269810001736613

Bellan-Santini D. 1963. Méthode de récolte et d'étude quantitative des peuplements sur substrat dur dans la zone d'agitation hydrodynamique. CIESMM, Coll. Benthos. Méthodes quant. échel. dimension. Benthontes, pp. 23-24.

Benedetti-Cecchi L., Airoldi L., Abbiati M., et al. 1996. Estimating the abundance of benthic invertebrates: A comparison of procedures and variability between observers. Mar. Ecol. Prog. Ser. 138: 93-101. https://doi.org/10.3354/meps138093

Bertocci I., Araujo R., Incera M., et al. 2012. Benthic assemblages of rock pools in northern Portugal: seasonal and between-pool variability. Sci. Mar. 76: 781-789.

Bianchi C.N., Pronzato R., Cattaneo-Vietti R., et al. 2004. Mediterranean marine benthos: a manual of methods for its sampling and study. Hard bottoms. Biol. Mar. Mediter. 11: 185-215.

Boudouresque C.F. 1971. Méthodes d'étude qualitative et quantitative du benthos (en particulier du phytobenthos). Téthys 3: 79-104.

Bussotti S., Terlizzi A., Fraschetti S., et al. 2006. Spatial and temporal variability of sessile benthos in shallow Mediterranean marine caves. Mar. Ecol. Prog. Ser. 325: 109-119. https://doi.org/10.3354/meps325109

Calvin N.I., Ellis R.J. 1978. Quantitative and qualitative observations on Laminaria dentigera and other subtidal kelps of Southern Kodiak Island, Alaska. Mar. Biol. 47: 331-336. https://doi.org/10.1007/BF00388924

Cebrian E., Ballesteros E. 2004. Zonation patterns of benthic communities in an upwelling area from the western Mediterranean (La Herradura, Alboran Sea). Sci. Mar. 68: 69-84. https://doi.org/10.3989/scimar.2004.68n169

Cebrian E., Ballesteros E., Canals M. 2000. Shallow rocky bottom benthic assemblages as calcium carbonate producers in the Alboran Sea (southwestern Mediterranean). Oceanol. Acta 23: 311-322. https://doi.org/10.1016/S0399-1784(00)00131-6

Coppejans E. 1980. Phytosociological studies of Mediterranean algal vegetation: rocky surfaces of the photophilic infralittoral zone. In: Price J.H., Irvine D.E.G., Farnham W.F. (eds), The Shore Environment. Academic Press, London, pp. 371-393.

Dayton P.K. 1971. Competition, disturbance and community organization: provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351-389. https://doi.org/10.2307/1948498

Deter J., Descamp P., Boissery P., et al. 2012. A rapid photographic method detects depth gradient in coralligenous assemblages. J. Exp. Mar. Biol. Ecol. 418: 75-82. https://doi.org/10.1016/j.jembe.2012.03.006

Dethier M.N., Graham E.S., Cohen S., et al. 1993. Visual versus random-point percent cover estimations: objective is not always better. Mar. Ecol. Prog. Ser. 96: 93-100. https://doi.org/10.3354/meps096093

Foster M.S., Harrold C., Hardin D.D. 1991. Point vs. photo quadrat estimates of the cover of sessile marine organisms. J. Exp. Mar. Biol. Ecol. 146: 193-203. https://doi.org/10.1016/0022-0981(91)90025-R

Garrabou J. 1999. Life-history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Mar. Ecol. Prog. Ser. 178: 193-204. https://doi.org/10.3354/meps178193

Garrabou J., Riera J., Zabala M. 1998. Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecol. 13: 225-247. https://doi.org/10.1023/A:1007952701795

Garrabou J., Ballesteros E., Zabala M. 2002. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar. Coast. Shelf Sci. 55: 493-508. https://doi.org/10.1006/ecss.2001.0920

Gunnill F.C. 1980. Recruitment and standing stock in populations of one green alga and five brown algae in the intertidal zone near La Jolla, California during 1973-1977. Mar. Ecol. Prog. Ser. 3: 231-243. https://doi.org/10.3354/meps003231

Hughes T.P., Jackson J.B.C. 1985. Population-dynamics and life histories of foliaceous corals. Ecol. Monogr. 55: 141-166. https://doi.org/10.2307/1942555

Jaccard P. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 37: 241-272.

John D.M., Lieberman D., Lieberman M. 1977. Quantitative study of structure and dynamics of benthic subtidal algal vegetation in Ghana (Tropical West-Africa). J. Ecol. 65: 497-521. https://doi.org/10.2307/2259497

Kipson S., Fourt M., Teixido N., et al. 2011. Rapid biodiversity assessment and monitoring method for highly diverse benthic communities: A case study of Mediterranean coralligenous outcrops. PLoS ONE 6: e27103. https://doi.org/10.1371/journal.pone.0027103 PMid:22073264 PMCid:PMC3206946

Kulczynski S. 1927. Die Pflanzenassoziationen der Pieninen. Bull. Int. Acad. Po. Sci. Lett., Cl. Sci. Math. Nat. 2: 57-203.

Legendre P., Legendre L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam, 853 pp. PMCid:PMC107859

Littler M.M., Littler D.S. 1985. Handbook of phycological methods. Ecological field methods: Macroalgae. Cambridge University Press, Cambridge, 632 pp.

Mann K.H. 1972. Ecological energetics of seaweed zone in a marine bay on Atlantic coast of Canada. II. Productivity of seaweeds. Mar. Biol. 14: 199-209.

Mantelatto M.C., Fleury B.G., Menegola C., et al. 2013. Cost-benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 449: 129-134. https://doi.org/10.1016/j.jembe.2013.09.009

Margalef R. 1974. Ecología. Ediciones Omega, Barcelona, 951 pp.

Martí R., Uriz M.J., Ballesteros E., et al. 2004a. Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. J. Mar. Biol. Assoc. UK 84: 557-572. https://doi.org/10.1017/S0025315404009567h

Martí R., Uriz M.J., Ballesteros E., et al. 2004b. Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. J. Mar. Biol. Assoc. UK 84: 573-580. https://doi.org/10.1017/S0025315404009579h

Martin D., Ballesteros E., Gili J.M., et al. 1993. Small-scale structure of infaunal polychaete communities in an estuarine environment: Methodological approach. Estuar. Coast. Shelf. Sci. 36: 47-58. https://doi.org/10.1006/ecss.1993.1004

McQuaid C.D. 1985. Seasonal variation in biomass and zonation of nine intertidal algae in relation to changes in radiation, sea temperature and tidal regime. Bot. Mar. 28: 539-544. https://doi.org/10.1515/botm.1985.28.12.539

Meese R.J., Tomich P.A. 1992. Dots on the rocks: A comparison of percent cover estimation methods. J. Exp. Mar. Biol. Ecol. 165: 59-73. https://doi.org/10.1016/0022-0981(92)90289-M

Niell F.X. 1979. Structure and succession in rocky algal communities of a temperate intertidal system. J. Exp. Mar. Biol. Ecol. 36: 185-200. https://doi.org/10.1016/0022-0981(79)90108-4

Parravicini V., Micheli F., Montefalcone M., et al. 2010. Rapid assessment of epibenthic communities: A comparison between two visual sampling techniques. J. Exp. Mar. Biol. Ecol. 395: 21-29. https://doi.org/10.1016/j.jembe.2010.08.005

Piazzi L., Balata D., Cecchi E., et al. 2014. Effectiveness of different investigation procedures in detecting anthropogenic impacts on coralligenous assemblages. Sci. Mar. 78: 319-328. https://doi.org/10.3989/scimar.03989.28A

Romero J. 1981. Biomasa de comunidades de algas bentónicas de las islas Medes (Girona). Oecol. Aquat. 5: 87-93.

Russell D.J. 1990. Benthic algae: biomass and abundance. In: Phillips R.C., McRoy C.P. (eds), Seagrass Research Methods. UNESCO, Paris.

Sakai Y. 1977. Vegetation structure and standing crop of the marine algae in the Laminaria bed of Otaru city, Hokkaido, Japan. Jpn. J. Ecol. 27: 45-51.

Sala E., Ballesteros E. 1997. Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar. Ecol. Progr. Ser. 152: 273-283. https://doi.org/10.3354/meps152273

Schonberg C.H.L. 2015. Monitoring bioeroding sponges: using rubble, quadrat, or intercept surveys? Biol. Bull. 228: 137-155. https://doi.org/10.1086/BBLv228n2p137 PMid:25920717

Sebens K.P. 1986. Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol. Monogr. 56: 73-96. https://doi.org/10.2307/2937271

Shannon C.E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Teixido N., Garrabou J., Arntz W.E. 2002. Spatial pattern quantification of Antarctic benthic communities using landscape indices. Mar. Ecol. Prog. Ser. 242: 1-14. https://doi.org/10.3354/meps242001

Teixido N., Garrabou J., Harmelin J.-G. 2011. Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS ONE 6: e23744. https://doi.org/10.1371/journal.pone.0023744 PMid:21887308 PMCid:PMC3161055

ter Braak C., Smilauer P. 1998. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca (NY), 352 pp.

Tomas F., Cebrian E., Ballesteros E. 2011. Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 92: 27-34. https://doi.org/10.1016/j.ecss.2010.12.004

True M.A. 1964. Dispositif pour récolte total du peuplement sur substrat dur. CIESMM, Coll. Comm. Benthos. pp. 25-27.

Trygonis V., Sini M. 2012. photoQuad: A dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods. J. Exp. Mar. Biol. Ecol. 424: 99-108. https://doi.org/10.1016/j.jembe.2012.04.018

Van Rein H., Schoeman D.S., Brown C.J., et al. 2011. Development of benthic monitoring methods using photoquadrats and scuba on heterogeneous hard-substrata: a boulder-slope community case study. Aquat. Conserv.: Mar. Freshw. Ecosyst. 21: 676-689. https://doi.org/10.1002/aqc.1224

Verlaque M. 1987. Contribution à l'étude du phytobenthos d'un ecosystème photophile termophile en Méditerranée Occidentale. Université d'Aix-Marseille, 389 pp.

Wethey D.S. 1984. Spatial pattern in barnacle settlement: day to day changes during the settlement season. J. Mar. Biol. Assoc. UK 64: 687-698. https://doi.org/10.1017/S0025315400030356

Whorff J.S., Griffing L. 1992. A video recording and analysis system used to sample intertidal communities. J. Exp. Mar. Biol. Ecol. 160: 1-12 https://doi.org/10.1016/0022-0981(92)90106-K




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es