Scientia Marina, Vol 80, No 4 (2016)

Isotopic discrimination factors and nitrogen turnover rates in reared Atlantic bluefin tuna larvae (Thunnus thynnus): effects of maternal transmission

Amaya Uriarte
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga , Spain

Alberto García
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga , Spain

Aurelio Ortega
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia , Spain

Fernando de la Gándara
Instituto Español de Oceanografía, Centro Oceanográfico de Murcia , Spain

José Quintanilla
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga , Spain

Raúl Laiz-Carrión
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga , Spain


The use of stable isotope analysis to study animal diets requires estimates of isotopic turnover rates (half time, t50) and discrimination factors (Δ) for an accurate interpretation of trophic patterns. The stable isotopes of carbon and nitrogen were analysed for eggs and reared larvae of Thunnus thynnus, as well as for the different diets supplied during the experiment. The results showed high values of δ15N in eggs and larvae (n=646) until 4 DAH. After this time lapse, the stable isotope values declined progressively until 12 DAH, when notochord flexion began. The δ13C showed an inverse trend, suggesting that maternal inheritance of the stable isotopes is evident until pre-flexion stages. This study proposes a model for estimating maternal isotopic signatures of bluefin broodstock. After notochord flexion, larvae were fed with aquaculture-bred gilthead seabream, which resulted in a rapid increase of bluefin larvae δ15N values together with a rapid decrease in δ13C values. The estimated nitrogen half-time to reach the steady state from the diet was 2.5±0.3 days and the discrimination factor was 0.4±0.3(‰). These results represent the first data set that has allowed isotopic nitrogen turnover rates and discrimination factors of the larval stages of bluefin tuna to be estimated.


bluefin tuna larvae; stable isotopes; maternal transmission; discrimination factors; nitrogen turnover ratio

Full Text:



Alemany F., Quintanilla L., Velez-Belchí P., et al. 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog. Oceanogr. 86: 21-38.

Anderson J.T. 1988. A review of size dependent survival during prerecruit stages of fishes in relation to recruitment. J. Northw. Atl. Fish. Sci. 8: 55-66.

Bode A., Álvarez-Ossorio M.T., Cunha M.E., et al. 2007. Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog. Oceanogr. 74: 115-131.

Block B.A., Teo S.L.H., Walli A., et al. 2005. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434: 1121-1127. PMid:15858572

Caut S., Angulo E., Courchamp F. 2009. Variation in discrimination factors (?15N and ?13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46: 443-453.

Catalan I.A., Tejedor A., Alemany F., et al. 2011. Trophic ecology of Atlantic bluefin tuna Thunnus thynnus larvae. J. Fish Biol. 78: 1545-1560. PMid:21539558

Costalago D., Navarro J., Alvarez-Calleja I., et al. 2012. Ontogenic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460: 169-181.

Cushing D. 1990. Plankton production and year-class strength in fish population: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26: 249-293.

De la Gándara F., Mylonas C.C., Covès D., et al. (eds). 2012. SELFDOTT Final Report, 46 pp.

DeNiro M.J., Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495-506.

DeNiro M.J., Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45: 341-351.

Estrada J.A., Lutcavage M., Thorrold S.R. 2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar. Biol. 147: 37-45.

Fortier L., Leggett W. 1985. A drift study of larval fish survival. Mar. Ecol. Prog. Ser. 25: 245-257.

Fromentin J.M., Powers J.E. 2005. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6: 281-306.

Gamboa-Delgado J., Ca-avate J.P., Zerolo R., et al. 2008. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole (Solea senegalensis). Aquaculture 280: 190-197.

Gannes L.Z., O'Brien D.M., del Rio C.M. 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78: 1271-1276.[1271:SIIAEA]2.0.CO;2

García A., Cortés D., Quintanilla L., et al. 2004. Shrinkage effects on sardine larvae (Sardina pilchardus) conserved by ethanol and liquid nitrogen. Rapp. Comm. Int. Mer. Médit. 37: 360.

García A., Cortés D., Ramírez T., et al. 2006. First data on growth and nucleic acid and protein content of field-captured Mediterranean bluefin (Thunnus thynnus) and albacore (Thunnus alalunga) tuna larvae: a comparative study. Sci. Mar. 70S2: 67-78.

García A., Cortés D., Quintanilla J., et al. 2013. Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish. Oceanogr. 22: 273-287.

Green B.S., McCormick M.I. 2005. Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. Mar. Ecol. Prog. Ser. 289: 263-272.

Hesslein R.H., Hallard K.A., Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by ?34S, ?13C, and ?15N. Can. J. Fish. Aquat. Sci. 50: 2071-2076.

Hjort J. 1914. Fluctuations in the great fisheries of Northern Europe viewed in the light of biological research. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 160: 1-228.

Hobson K.A. 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314-326.

Hobson K.A., Welch H.E. 1992. Determination of trophic relationships within a high Artic marine food web using ?13C and ?15N analysis. Mar. Ecol. Prog. Ser. 84: 9-18.

Hoffman J.C., Cotter A.M., Peterson G.S., et al. 2011. Rapid stable isotope turnover of larval fish in a Lake Superior coastal wetland: Implications for diet and life history studies. Aquat. Ecosyst. Health 14: 403-413.

Hoie H., Folkvord A., Johannessen A. 1999. Maternal, paternal and temperature effects on otolith size of young herring (Clupea harengus L.) larvae. J. Exp. Mar. Biol. Ecol. 234: 167-184.

Houde E.D. 1987. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2: 17-29.

ICCAT 2005. Recommendation by ICCAT to establish a multi-annual recovery plan for bluefin tuna in the eastern Atlantic and Mediterranean. ICCAT, 06-05,14 pp.

Itoh T., Shiina S., Tsuji F., et al. 2000. Otolith daily increment formation in laboratory reared larval and juvenile bluefin tuna Thunnus thynnus. Fish. Sci. 66: 834-839

Jardine T.D., Chernoff E., Curry R.A. 2008. Maternal transfer of carbon and nitrogen to progeny of sea-run and resident brook charr (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 65: 2201-2210.

Kaji T. 2003. Bluefin tuna larval rearing and development- state of the art. Cahier Options Méditerranéennes 60: 85-89.

Kaji T., Oka M., Takeuchi H., et al. 1999. Development of growth hormone cells of laboratory reared yellowfin tuna Thunnus albacores larvae and early juveniles. Fish. Sci. 65: 583-587.

Kiyoko R., Ducatti C., Dalton J.C., et al. 2008. Stable carbon (?13C) and nitrogen (?15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquac. Res. 39: 370-381.

Laiz-Carrión R., Quintanilla J.M., Mercado J.M., et al. 2011. Combined study of daily growth variability and nitrogen–carbon isotopic signature analysis of schooling Sardina pilchardus larvae. J. Fish Biol. 79: 896-914. PMid:21967580

Laiz-Carrión R., Quintanilla J.M., Torres A.P., et al. 2013. Hydrographic patterns conditioning variable trophic pathways and early life dynamics of bullet tuna Auxis rochei larvae in the Balearic Sea. Mar. Ecol. Prog. Ser. 475: 203-212.

Laiz-Carrión R., Gerard T., Uriarte A., et al. 2014. Larval bluefin tuna (Thunnus thynnus) trophodynamics from Balearic Sea (WM) and Gulf of Mexico spawning ecosystems by stable isotope. ICCAT SCRS/2014/103.

Laiz-Carrión R., Gerard. T., Uriarte A., et al. 2015. Trophic ecology of Atlantic bluefin tuna (Thunnus thynnus) larvae from the Gulf of Mexico and NW Mediterranean spawning grounds: a comparative stable isotope study. PLoS One 10: e0138638. PMid:26375820 PMCid:PMC4574292

Le Bourg B., Kiszka J., Bustamante P. 2014. Mother–embryo isotope (15N, 13C) fractionation and fractionation and mercury (Hg) transfer in aplacental deep-sea sharks. J. Fish Biol. 84: 1574-1581. PMid:24661179

Le Vay L., Gamboa-Delgado J. 2011. Naturally-occurring stable isotopes as direct measures of larval feeding efficiency, nutrient incorporation and turnover. Aquaculture 315: 95-103.

Logan J.M., Jardine T.D., Miller T.J., et al. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77: 838-846. PMid:18489570

Logan J.M., Rodríguez-Marín E., Go-i N., et al. 2010. Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol. 158: 73-85.

Llopiz J.K., Richardson D.E., Shiroza A., et al. 2010. Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnol. Oceanogr. 55(3): 983-996.

Llopiz J.K., Muhling B.A., Lamkin J.T. 2014. Feeding dynamics of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico. ICCAT SCRS/2014/173.

MacAvoy S.E., Arneson L.S., Bassett E. 2005. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Can. J. Zool. 83: 631-641.

MacKenzie B.R., Mosegaard H., Rosenberg A.A. 2009. Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conser. Let. 2: 25-34.

Madigan D.J., Litvin S.Y., Popp B.N., et al. 2012. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis) PLoS One 7: e49220. PMid:23145128 PMCid:PMC3492276

Marteinsdottir G., Steinarsson A. 1998. Maternal influence on the size and viability of Icelandie cod (Gadus morhua L.) by incluing age diversity of spawners. Can. J. Fish. Aquat. Sci. 55: 1372-1377.

Martínez del Rio C., Wolf N., Carleton S.A., et al. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 84: 91-111. PMid:19046398

Mather F.J., Mason J.M., Jones A.C. 1995. Historical document: life history and fisheries of Atlantic bluefin tuna. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-SEFSC 370, 165 pp.

McMeans B.C., Olin J.A., Benz W. 2009. Stable-isotope comparisons between embryos and mothers of a placentatrophic shark species. J. Fish. Biol. 75: 2464-2474. PMid:20738502

Minagawa M., Wada E. 1984. Stepwise enrichment of 15N along food chain: further evidence and the relation between ?15N and animal age. Geochim. Cosmochim. Acta 48: 1135-1140.

Miyashita S., Sawada Y., Okada T., et al. 2001. Morphological development and growth of laboratory-reared larval and juvenile Thunnus orientalis (Pisces: Scombridae). Fish. Bull. 99: 601-616.

Monteleone D.M., Houde E.D. 1990. Influence of maternal size on survival and growth of striped bass, Morone saxatilis, eggs and larvae. J. Exp. Mar. Biol. Ecol. 140: 1-11.

Ortega A., Seoka M., Belmonte A., et al. 2011. Cultivo larvario de atún rojo (Thunnus thynnus) en el Centro Oceanográfico de Murcia (IEO). XIII Congreso Nacional de Acuicultura. Castelldefels (Barcelona) Espa-a.

Pepin P., Dower J.F. 2007. Variability in the trophic position of larval fish in a coastal pelagic ecosystem based on stable isotope analysis. J. Plankton Res. 29: 727-737.

Pepin P., Dominique R., Bouchard C., et al. 2014. Once upon a larva: revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 72: 359-373.

Perez K.O., Fuiman L.A. 2015. Maternal diet and larval diet influence survival skills of larval red drum Sciaenops ocellatus. J. Fish Biol. 86: 1286-1304. PMid:25740661

Peterson B.J., Fry B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293-320.

Post D.M. 2002. Using stable isotopes to estimate trophic position models, methods, and assumptions. Ecology 83: 703-718.[0703:USITET]2.0.CO;2

Quintanilla J.M., Laiz-Carrion R., Uriarte A., et al. 2015. Influence of trophic pathways on daily growth patterns of western Mediterranean anchovy Engraulis encrasicolus larvae. Mar. Ecol. Prog. Ser. 531: 263-275.

Reglero P., Urtizberea A., Torres A., et al. 2011. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433: 205-219.

Reglero P., Ortega A., Blanco E., et al. 2014. Size-related differences in growth and survival in piscivorous fish larvae fed different prey types. Aquaculture 433: 94-101.

Rooker J.R., Bremer A.J.R., Block B.A., et al. 2007. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15: 265-310.

Satoh K., Tanaka Y., Masujima M., et al. 2013. Relationship between the growth and survival of larval Pacific bluefin tuna, Thunnus orientalis. Mar. Biol. 160: 691-702.

Suzuki Z., Kimoto A., Sakai O. 2013. Note on the strong 2003 year-class that appeared in the Atlantic bluefin fisheries. Collect. Vol. Sci. Pap. ICCAT 69: 229-234.

Swain P., Nayak S.K. 2009. Role of maternally derived immunity in fish. Fish Shellfish Immun. 27: 89-99. PMid:19442742

Sweeting C.J., Barry J.T., Polunin N.V.C., et al. 2007a. Effects of body size and environment on diet-tissue ?15N fractionation in fishes. J. Exp. Mar. Biol. Ecol. 340: 1-10.

Sweeting C. J., Barry J.T., Polunin N.V.C., et al. 2007b. Effects of body size and environment on diet-tissue ?13C fractionation in fishes. J. Exp. Mar. Biol. Ecol. 352: 165-176.

Tanaka Y., Satoh K., Iwahashi M., et al. 2006. Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Mar. Ecol. Prog. Ser. 319: 225-235.

Tanaka Y., Minami H., Ishihi Y., et al. 2010. Prey utilization by hatchery-reared Pacific bluefin tuna larvae in mass culture tank estimated using stable isotope analysis, with special reference to their growth variation. Aquac. Sci. 58: 501-508.

Tanaka Y., Minami. H., Ishihi Y., et al. 2014. Relationship between prey utilization and growth variation in hatchery-reared Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel), larvae estimated using nitrogen stable isotope analysis. Aquac. Res. 45: 537-545.

Vander Zanden M.J., Rasmussn J.B. 2001. Variation in ?15N and ?13C trophic fractionation: Implications for aquatic food web. Limnol. Oceanogr. 44: 2061-2066.

Varela J.L., Larra-aga A., Medina A. 2011. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J. Exp. Mar. Biol. Ecol. 406: 21-28.

Vaudo J.J., Matich P., Heithaus M.R. 2010. Mother–offspring isotope fractionation in two species of placentatrophic sharks. J. Fish Biol. 77: 1724-1727. PMid:21078031

Wolf N., Carleton S.A., Martinez del Rio C. 2009. Ten years of experimental animal isotopic ecology. SIA in animal ecology. Funct. Ecol. 23: 17-26.

Yúfera M., Ortiz-Delgado J.B., Hoffman T., et al. 2014. Organogenesis of digestive system, visual system and other structures in Atlantic bluefin tuna (Thunnus thynnus) larvae reared with copepods in mesocosm system. Aquaculture 426-427: 126-137.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support