Scientia Marina, Vol 80, No 4 (2016)

Aerosol inputs affect the optical signatures of dissolved organic matter in NW Mediterranean coastal waters


https://doi.org/10.3989/scimar.04318.20B

E. Denisse Sánchez-Pérez
Sorbonne Universités, UPMC Univ. Paris 06 - Institut de Ciències del Mar, CSIC, France

Isabel Marín
Institut de Ciències del Mar, CSIC, Spain

Sdena Nunes
Institut de Ciències del Mar, CSIC, Spain

Laura Fernández-González
Institut de Ciències del Mar, CSIC, Spain

Francesc Peters
Institut de Ciències del Mar, CSIC, Spain

Mireille Pujo-Pay
Sorbonne Universités, UPMC Univ. Paris 06 - CNRS, France

Pascal Conan
Sorbonne Universités, UPMC Univ. Paris 06 - CNRS, France

Cèlia Marrasé
Institut de Ciències del Mar, CSIC, Spain

Abstract


Aeolian inputs of organic and inorganic nutrients to the ocean are important as they can enhance biological production in surface waters, especially in oligotrophic areas like the Mediterranean. The Mediterranean littoral is particularly exposed to both anthropogenic and Saharan aerosol depositions on a more or less regular basis. During the last few decades experimental studies have been devoted to examining the effect of inorganic nutrient inputs from dust on microbial activity. In this study, we performed experiments at two different locations of the NW Mediterranean, where we evaluated the changes in the quality and quantity of dissolved organic matter due to atmospheric inputs of different origin (Saharan and anthropogenic) and its subsequent transformations mediated by microbial activities. In both experiments the humic-like and protein-like substances, and the fluorescence quantum yield increased after addition. In general, these changes in the quality of dissolved organic matter did not significantly affect the prokaryotes. The recalcitrant character of the fluorescent dissolved organic matter (FDOM) associated with aerosols was confirmed, as we found negligible utilization of chromophoric compounds over the experimental period. We framed these experiments within a two-year time series data set of atmospheric deposition and coastal surface water analyses. These observations showed that both Saharan and anthropogenic inputs induced changes in the quality of organic matter, increasing the proportion of FDOM substances. This increase was larger during Saharan dust events than in the absence of Saharan influence.

Keywords


FDOM; aerosol deposition; DOC; Mediterranean Sea

Full Text:


HTML PDF XML

References


Béthoux J.P., Morin P., Chaumery C., et al. 1998. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Mar. Chem. 63: 155-169. https://doi.org/10.1016/S0304-4203(98)00059-0

Cauwet G. 1994. HTCO method for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation. Mar. Chem. 47: 55-64. https://doi.org/10.1016/0304-4203(94)90013-2

Cauwet G. 1999. Determination of dissolved organic carbon (DOC) and nitrogen (DON) by high temperature combustion. In: Grashoff K., Kremling K., Ehrhard M. (eds) Methods of Seawater Analysis. WILEY-VCH, pp. 407-420. https://doi.org/10.1002/9783527613984.ch15

Chen R.F., Bada J.L. 1992. The fluorescence of dissolved organic matter in seawater. Mar. Chem. 37: 191-221. https://doi.org/10.1016/0304-4203(92)90078-O

Coble P.G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51: 325-346. https://doi.org/10.1016/0304-4203(95)00062-3

Coble P.G. 2007. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 107: 402-418. https://doi.org/10.1021/cr050350+ PMid:17256912

De Haan H. 1993. Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol. Oceanogr. 38: 1072-1076. https://doi.org/10.4319/lo.1993.38.5.1072

De Vicente I., Ortega-Retuerta E., Morales-Baquero R., et al. 2012. Contribution of dust inputs to dissolved organic carbon and water transparency in Mediterranean reservoirs. Biogeosci. 9: 5049-5060. https://doi.org/10.5194/bg-9-5049-2012

Ferrari G. 2000. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions). Mar. Chem. 70: 339-357. https://doi.org/10.1016/S0304-4203(00)00036-0

Gkikas A., Hatzianastassiou N., Mihalopoulos N. 2009. Aerosol events in the broader Mediterranean basin based on 7-year (2000-2007) MODIS C005 data. Ann. Geophys. 27: 3509-3522. https://doi.org/10.5194/angeo-27-3509-2009

Gallisai R., Peters F., Bassart S., et al. 2014. Mediterranean basin-wide correlations between Saharan dust depositation and ocean chlorophyll concentration. Biogeosci. 9: 8611-8639. https://doi.org/10.5194/bgd-9-8611-2012

Gasol J.M., Del Giorgio P.A. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64: 197-224. https://doi.org/10.3989/scimar.2000.64n2197

Green S.A., Blough N.V. 1994. Natural Waters Optical absorption and fluorescence of chromophoric properties dissolved organic matter in natural waters. Limnol. Oceanogr. 39: 1903-1916. https://doi.org/10.4319/lo.1994.39.8.1903

Guadayol Ò., Peters F., Marrasé C., et al. 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: A time-series analysis. Mar. Ecol. Progr. Ser. 381: 139-155. https://doi.org/10.3354/meps07939

Guieu C., Ridame C., Pulido-Villena E., et al. 2014a. Dust deposition in an oligotrophic marine environment: impact on the carbon budget. Biogeosci. 11: 1707-1738. https://doi.org/10.5194/bgd-11-1707-2014

Guieu C., Aumont O., Paytan A., et al. 2014b. The significance of the episodic nature of atmospheric depositation to Low Nutrient Low Chlorophyll regions. Glob. Biogeochem. Cycles 28: 1179-1198. https://doi.org/10.1002/2014GB004852

Guerzoni S., Molinaroli E., Chester R. 1997. Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications. Deep-Sea. Res. II 44: 631-654. https://doi.org/10.1016/S0967-0645(96)00096-3

Guerzoni S., Chester R., Dulac F., et al. 1999. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progr. Oceanogr. 44: 147-190. https://doi.org/10.1016/S0079-6611(99)00024-5

Herut B., Zohary T., Krom M.D., et al. 2005. Response of East Mediterranean surface water to Saharan dust: On-board microcosm experiment and field observations. Deep Sea Res. II 52: 3024-3040. https://doi.org/10.1016/j.dsr2.2005.09.003

Izquierdo R., Benítez-Nelson C.R., MasquéP., et al. 2012. Atmospheric phosphorus deposition in a near-coastal rural site in the NE Iberian Peninsula and its role in marine productivity. Atmos. Environ. 49: 361-370. https://doi.org/10.1016/j.atmosenv.2011.11.007

Jickells T.D., An Z.S., Andersen K.K., et al. 2005. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry and Climate. Science 308: 67-71. https://doi.org/10.1126/science.1105959 PMid:15802595

Jordi Q., Basterretxea G., Tovar-Sánchez A., et al. 2012. Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. PNAS 109: 21246-21249. https://doi.org/10.1073/pnas.1207567110 PMid:23236141 PMCid:PMC3535591

Krom M.D., Kress N., Brenner S., et al. 1991. Phosphorous limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36: 424-432. https://doi.org/10.4319/lo.1991.36.3.0424

Lønborg C., Alvarez-Salgado X.A., Martinez-Garcia S., et al. 2010. Stoichiometry of dissolved organic matter and the kinetics of its microbial degradation in a coastal upwelling system. Aquat. Microb. Ecol. 58: 117-126. https://doi.org/10.3354/ame01364

Lucea A., Duarte C.M., Agusti S., et al. 2003. Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean. J. Sea. Res. 49: 157-170. https://doi.org/10.1016/S1385-1101(03)00005-4

Mara-on E., Fernández A., Mouri-o-Carballido B., et al. 2010. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55: 2339-2352. https://doi.org/10.4319/lo.2010.55.6.2339

Marín I., Nunes S., Sánchez-Pérez E.D., et al. 2017. Anthropogenic versus mineral aerosols in the stimulation of microbial planktonic communities in coastal waters of the northwestern Mediterranean Sea. Sci. Total. Environ. 574: 553-568. https://doi.org/10.1016/j.scitotenv.2016.09.005 PMid:27648533

Martinez-García S., Arbones B., García-Martín E.E., et al. 2015. Impact of atmospheric on the metabolism of coastal microbial communities. Est. Coast. Shelf. Sci. 153: 18-28. https://doi.org/10.1016/j.ecss.2014.11.025

McGill D.A. 1965. The relative supplies of phosphate, nitrate and silicate in the Mediterranean Sea. Rapport des procès Verbaux des Réunions de la CIESM XVIII, pp. 737-744.

Melhuish W.H. 1961. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J. Phys. Chem. 65: 229-235. https://doi.org/10.1021/j100820a009

Mladenov N., Sommaruga R., Morales-Baquero R., et al. 2011. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat. Commun. 2: 405. https://doi.org/10.1038/ncomms1411 PMid:21792184 PMCid:PMC3144587

Moran M.A., Sheldon W.M., Zepp G. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 46: 1254-1264. https://doi.org/10.4319/lo.2000.45.6.1254

Morel A., Gentilli B. 2009. The dissolved yellow substance and the shades of blue in the Mediterranean Sea. Biogeosci. 6: 2625-2636. https://doi.org/10.5194/bg-6-2625-2009

Moulin C., Lambert C.E., Dulac F., et al. 1997. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387: 691-694. https://doi.org/10.1038/42679

Nieto-Cid M., Álvarez-Salgado X.A., Pérez F.F. 2006. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol. Oceanogr. 51: 1391-1400. https://doi.org/10.4319/lo.2006.51.3.1391

Organelli E., Bricaud A., Antoine D., et al. 2014. Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site). Deep Sea Res. I 91: 72-85. https://doi.org/10.1016/j.dsr.2014.05.003

Para J., Coble P.G., Charrière B., et al. 2010. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River. Biogeosci. 7: 4083-4103. https://doi.org/10.5194/bg-7-4083-2010

Pateraki S., Assimakopoulos V.D., Bougiatioti A., et al. 2012. Carbonaceous and ionic compositional patterns of fine particles aver and urban Mediterranean area. Sci. Total. Environ. 424: 251-263. https://doi.org/10.1016/j.scitotenv.2012.02.046 PMid:22425278

Paytan A., Mackey K.R.M., Chen Y., et al. 2009. Toxicity of atmospheric aerosols on marine phytoplankton. PNAS 106: 4601-4605. https://doi.org/10.1073/pnas.0811486106 PMid:19273845 PMCid:PMC2653564

Pérez G.L., Galí M., Royer S.J., et al. 2016. Bio-optical characterization of offshore NW Mediterranean waters: CDOM contribution to the absorption budget and diffuse attenuation of downwelling irradiance. Deep-Sea. Res. I. 114: 111-127. https://doi.org/10.1016/j.dsr.2016.05.011

Pulido-Villena E., Wagener T., Guieu C. 2008. Bacterial response to dust pulses in the western Mediterranean: Implications for carbon cycling in the oligotrophic ocean. Glob. Biogeochim. Cycles 22: 1-12. https://doi.org/10.1029/2007GB003091

Querol X., Alastuey A., Rodriguez S., et al. 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmosph. Environ. 35: 6407-6419. https://doi.org/10.1016/S1352-2310(01)00361-2

Querol X., Alastuey A., Viana M.M., et al. 2004. Speciation and origin of PM10 and PM2.5 in Spain. J. Aerosol Sci. 35: 1151-1172. https://doi.org/10.1016/j.jaerosci.2004.04.002

Reche I., Ortega-Retuerta E., Romera O., et al. 2009. Effect of Saharan dust inputs on bacterial activity and community composition in Mediterranean lakes and reservoirs. Limnol. Oceanogr. 54: 869-879. https://doi.org/10.4319/lo.2009.54.3.0869

Ridame C. 2001. Rôle des apports atmosphériques d'origine continental dans la biogéochimie marine: Impact des apports sahariens sur la production primaire en Méditerranée. PhD thesis, Université Paris, pp. 213.

Romera-Castillo C., Nieto-Cid M., Castro C.C., et al. 2011. Fluorescence: Absorption coefficient ratio — Tracing photochemical and microbial degradation processes affecting coloured dissolved organic matter in a coastal system. Mar. Chem. 125: 26-38. https://doi.org/10.1016/j.marchem.2011.02.001

Romera-Castillo C., Álvarez-Salgado X.A., Galí M., et al. 2013. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Mar. Chem. 148: 44-51. https://doi.org/10.1016/j.marchem.2012.10.004

Romero E., Peters F., Marrasé C., et al. 2011. Coastal Mediterranean plankton stimulation dynamics through a dust storm event: An experimental simulation. Est. Coast. Shelf. Sci. 93: 27-39. https://doi.org/10.1016/j.ecss.2011.03.019

Romero E., Peters F., Arin L., et al. 2014. Decreased seasonality and high variability of coastal plankton dynamics in an urban location of the NW Mediterranean. J. Sea. Res. 88: 130-143. https://doi.org/10.1016/j.seares.2014.01.010

Sala M.M., Peters F., Gasol J.M, et al. 2002. Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean. Aqua. Microb. Ecol. 27: 47-56. https://doi.org/10.3354/ame027047

Sugimura Y., Suzuki Y. 1998. A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in sea water by direct injection of a liquid sample. Mar. Chem. 24: 105-131. https://doi.org/10.1016/0304-4203(88)90043-6

Suárez E.B., Matta J.L., Rolón M., et al. 2008. Molecular identification of the bacterial burden in Sahara Dust Samples using a new method to improve the evidence for the effective management of public health measures during an SD event. J.E.H.R. 7: 99-106.

Smith R.C., Cullen J.J. 1995. Effects of UV radiation of phytoplankton. Rev. Geophys. 33: 1211-1223. https://doi.org/10.1029/95RG00801

Teira E., Hernando-Morales V., Martínez-García S., et al. 2013. Response of bacterial community structure and function to experimental rainwater additions in a coastal eutrophic embayment. Est. Coast. Shelf. Sci. 119: 44-53. https://doi.org/10.1016/j.ecss.2012.12.018

Thingstad T.F., Zweifel U.L., Rassoulzadegan F. 1998. P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol. Oceanogr. 43: 88-94. https://doi.org/10.4319/lo.1998.43.1.0088

Volpe G., Banzon V.F., Evans R.H., et al. 2009. Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact? Glob. Biogeochem. Cycles 23: GB3007.

Xing X., Claustre H., Wang H., et al. 2014. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers. Deep Sea Res. I 83: 93-101. https://doi.org/10.1016/j.dsr.2013.09.008

Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10: 221-231. https://doi.org/10.1016/0011-7471(63)90358-9




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es