Scientia Marina, Vol 80, No S1 (2016)

The role of ocean velocity in chlorophyll variability. A modelling study in the Alboran Sea

Jordi Solé
Institut de Ciències del Mar, CSIC , Spain

Joaquim Ballabrera-Poy
Institut de Ciències del Mar, CSIC , Spain

Diego Macías
European Commission, Joint Research Centre , Italy

Ignacio A. Catalán


In this work we focus on the Alboran Sea (western Mediterranean) to relate wind field and ocean velocity variability with chlorophyll a (Chl a) behaviour, using a 2-km resolution, coupled 3D ocean circulation-NPZD model (ROMS). The analysis is done in three steps. First, we split the seasonal and residual contribution for the fields under study. Second, we calculate the corresponding empirical orthogonal functions (EOFs) for the seasonal and residual parts. Finally, we relate each pair of variables for both seasonal and residual contribution EOFs. The results reported here allow the links between wind and Chl a to be quantified. We explain these links in terms of the ocean velocity field acting as a driver of Chl a variability. The results show that, although the seasonal part of the Chl a field is modulated by the vertical velocity, the residual component is modulated by the horizontal velocity components. Vertical velocities are responsible, through coastal upwelling, for Chl a bloom enhancement, while horizontal velocities spread coastal Chl a surface blooms off-shore.


Alboran Sea; chlorophyll; wind forcing; primary production; ocean biogeochemical model; ROMS model; EOF analysis

Full Text:



Adani M., Dobricic S., Pinardi N. 2011. Quality assessment of a 1985-2007 Mediterranean Sea reanalysis. J. Atm. Ocean. Techn. 28: 569-589.

Baldacci A., Corsini G., Grasso R., et al. 2001. A study of the Alboran sea mesoscale system by means of empirical orthogonal function decomposition of satellite data. J. Mar. Syst. 29: 293-311.

Catalán I., Macías D., Solé J., et al. 2013. Stay off the motorway: Resolving the pre-recruitment life history dynamics of the European anchovy in the SW Mediterranean through a spatially-explicit individual based model (SEIBM). Progr. Oceanogr. 111: 140-153.

Coble P.G. 2007. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 107: 402-418.

Dee D.P., Uppala S.M., Simmons A.J., et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137: 553-597.

Estrada M. 1985. Fitoplàncton i producció primària a la Mediterrània occidental. Diputació de Barcelona. Quad. Ecol. Apl. 8: 99-109.

Fairall C., Bradley E., Rogers D., et al. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. 101: 3747-3764.

Fennel K., Wilkin J., Levin J., et al. 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles 20: GB3007.

Large W., McWilliams J., Doney S. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32: 363-403.

Macías D., Navarro G., Echevarría F., et al. 2007. Phytoplankton pigment distribution in the northwestern Alboran Sea and meteorological forcing: A remote sensing study. J. Mar. Res. 65: 523-543.

Macías D., Bruno M., Echevarría F., et al. 2008. Meteorologically-induced mesoscale variability of the north-western Alboran Sea (Southern Spain) and related biological patterns. Est. Coast. Shelf Sci. 78: 250-266.

Macías D., Catalán I., Solé J., et al. 2011. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy. Deep-Sea Res. 58: 1175-1188.

Macías D., Castilla-Espino D., García-del-Hoyo J.J., et al. 2014. Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): A modeling study. J. Mar. Syst. 135: 150-159.

Mahadevan A., Thomas L., Tandon A. 2008. Comment on "Eddy/ Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 320: 448.

Marra J. 1980. Vertical Mixing and Primary Production. In: Primary Productivity in the Sea. Environmental Science Research series 19. Springer US. pp. 121-137.

McGillicuddy D.J., Anderson L.A., Bates N.R., et al. 2007. Eddy/ Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 316: 1021-1026.

McGillicuddy D.J., Ledwell J.R. Anderson L.A. 2008. Response to Comment on 'Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms'. Science 320: 448.

Navarra A., Simoncini V. 2010. A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer.

Nieves V., Llebot C., Turiel A., et al. 2007. Common turbulent signature in sea surface temperature and chlorophyll maps. Geophys. Res. Lett. 62: 2-5.

O'Reilly J.E., Maritorena S., Mitchell B.G., et al. 1998. Ocean color chlorophyll algorithms for seaWIFS. J. Geophys. Res. Oceans 103(C11): 24937-24953.

Oguz T., Macias D., Tintoré J. 2015. Ageostrophic Frontal Processes Controlling Phytoplankton Production in the Catalano-Balearic Sea (Western Mediterranean). PLoS ONE 10: e0129045.

Pascual A., Marcos M., Gomis D. 2008. Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J. Geophys. Res. Oceans 113.

Patti B., Guisande C., Vergara A., et al. 2008. Factors responsible for the differences in satellite-based chlorophyll a concentration between the major global upwelling areas. Est. Coast. Shelf Sci. 76: 775-786.

Peliz A., Dubert J., Marchesiello P., et al. 2007. Surface circulation in the Gulf of Cadiz: Model and mean flow structure. J. Geophys. Res. 112: 429-436.

Powell T.P., Lewis C.V., Curchister E.N., et al. 2006. Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery. J. Geophys. Res. 111: 1877-1898.

Sarhan T.J., García Lafuente M., Vargas J.M., et al. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331.

Shchepetkin A., McWilliams J. 2003. A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic Model with a Non-Aligned Vertical Coordinate. J. Geophys. Res. 108: 3090.

Shchepetkin A., McWilliams J. 2005. The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Model. 9: 347-404.

Smolarkiewicz P.K., Margolin L.G. 1998. MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 140: 459-480.

Solé J., Ruiz S., Pascual A., et al. 2012. Ocean color response to wind forcing in the Alboran Sea: A new forecasting method. J. Mar. Syst. 98: 1-8.

Uppala S.M., Kållberg P.W., Simmons A.J., et al. 2005. The ERA- 40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961-3012.

von Storch H., Zwiers F.W. 2001. Statistical Analysis in Climate Research, Cambridge Univ. Press, 484 pp.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support