Scientia Marina, Vol 80, No S1 (2016)

The role of ocean velocity in chlorophyll variability. A modelling study in the Alboran Sea


https://doi.org/10.3989/scimar.04290.04A

Jordi Solé
Institut de Ciències del Mar, CSIC , Spain

Joaquim Ballabrera-Poy
Institut de Ciències del Mar, CSIC , Spain

Diego Macías
European Commission, Joint Research Centre , Italy

Ignacio A. Catalán
IMEDEA (CSIC-UIB) , Spain

Abstract


In this work we focus on the Alboran Sea (western Mediterranean) to relate wind field and ocean velocity variability with chlorophyll a (Chl a) behaviour, using a 2-km resolution, coupled 3D ocean circulation-NPZD model (ROMS). The analysis is done in three steps. First, we split the seasonal and residual contribution for the fields under study. Second, we calculate the corresponding empirical orthogonal functions (EOFs) for the seasonal and residual parts. Finally, we relate each pair of variables for both seasonal and residual contribution EOFs. The results reported here allow the links between wind and Chl a to be quantified. We explain these links in terms of the ocean velocity field acting as a driver of Chl a variability. The results show that, although the seasonal part of the Chl a field is modulated by the vertical velocity, the residual component is modulated by the horizontal velocity components. Vertical velocities are responsible, through coastal upwelling, for Chl a bloom enhancement, while horizontal velocities spread coastal Chl a surface blooms off-shore.

Keywords


Alboran Sea; chlorophyll; wind forcing; primary production; ocean biogeochemical model; ROMS model; EOF analysis

Full Text:


HTML PDF XML

References


Adani M., Dobricic S., Pinardi N. 2011. Quality assessment of a 1985-2007 Mediterranean Sea reanalysis. J. Atm. Ocean. Techn. 28: 569-589. http://dx.doi.org/10.1175/2010JTECHO798.1

Baldacci A., Corsini G., Grasso R., et al. 2001. A study of the Alboran sea mesoscale system by means of empirical orthogonal function decomposition of satellite data. J. Mar. Syst. 29: 293-311. http://dx.doi.org/10.1016/S0924-7963(01)00021-5

Catalán I., Macías D., Solé J., et al. 2013. Stay off the motorway: Resolving the pre-recruitment life history dynamics of the European anchovy in the SW Mediterranean through a spatially-explicit individual based model (SEIBM). Progr. Oceanogr. 111: 140-153. http://dx.doi.org/10.1016/j.pocean.2013.02.001

Coble P.G. 2007. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 107: 402-418. http://dx.doi.org/10.1021/cr050350+

Dee D.P., Uppala S.M., Simmons A.J., et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137: 553-597. http://dx.doi.org/10.1002/qj.828

Estrada M. 1985. Fitoplàncton i producció primària a la Mediterrània occidental. Diputació de Barcelona. Quad. Ecol. Apl. 8: 99-109.

Fairall C., Bradley E., Rogers D., et al. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. 101: 3747-3764. http://dx.doi.org/10.1029/95JC03205

Fennel K., Wilkin J., Levin J., et al. 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles 20: GB3007.

Large W., McWilliams J., Doney S. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32: 363-403. http://dx.doi.org/10.1029/94RG01872

Macías D., Navarro G., Echevarría F., et al. 2007. Phytoplankton pigment distribution in the northwestern Alboran Sea and meteorological forcing: A remote sensing study. J. Mar. Res. 65: 523-543. http://dx.doi.org/10.1357/002224007782689085

Macías D., Bruno M., Echevarría F., et al. 2008. Meteorologically-induced mesoscale variability of the north-western Alboran Sea (Southern Spain) and related biological patterns. Est. Coast. Shelf Sci. 78: 250-266. http://dx.doi.org/10.1016/j.ecss.2007.12.008

Macías D., Catalán I., Solé J., et al. 2011. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy. Deep-Sea Res. 58: 1175-1188. http://dx.doi.org/10.1016/j.dsr.2011.08.013

Macías D., Castilla-Espino D., García-del-Hoyo J.J., et al. 2014. Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): A modeling study. J. Mar. Syst. 135: 150-159. http://dx.doi.org/10.1016/j.jmarsys.2013.04.014

Mahadevan A., Thomas L., Tandon A. 2008. Comment on "Eddy/ Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 320: 448. http://dx.doi.org/10.1126/science.1152111

Marra J. 1980. Vertical Mixing and Primary Production. In: Primary Productivity in the Sea. Environmental Science Research series 19. Springer US. pp. 121-137. http://dx.doi.org/10.1007/978-1-4684-3890-1_7

McGillicuddy D.J., Anderson L.A., Bates N.R., et al. 2007. Eddy/ Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 316: 1021-1026. http://dx.doi.org/10.1126/science.1136256

McGillicuddy D.J., Ledwell J.R. Anderson L.A. 2008. Response to Comment on 'Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms'. Science 320: 448. http://dx.doi.org/10.1126/science.1148974

Navarra A., Simoncini V. 2010. A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer. http://dx.doi.org/10.1007/978-90-481-3702-2

Nieves V., Llebot C., Turiel A., et al. 2007. Common turbulent signature in sea surface temperature and chlorophyll maps. Geophys. Res. Lett. 62: 2-5. http://dx.doi.org/10.1029/2007gl030823

O'Reilly J.E., Maritorena S., Mitchell B.G., et al. 1998. Ocean color chlorophyll algorithms for seaWIFS. J. Geophys. Res. Oceans 103(C11): 24937-24953. http://dx.doi.org/10.1029/98JC02160

Oguz T., Macias D., Tintoré J. 2015. Ageostrophic Frontal Processes Controlling Phytoplankton Production in the Catalano-Balearic Sea (Western Mediterranean). PLoS ONE 10: e0129045. http://dx.doi.org/10.1371/journal.pone.0129045

Pascual A., Marcos M., Gomis D. 2008. Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J. Geophys. Res. Oceans 113.

Patti B., Guisande C., Vergara A., et al. 2008. Factors responsible for the differences in satellite-based chlorophyll a concentration between the major global upwelling areas. Est. Coast. Shelf Sci. 76: 775-786. http://dx.doi.org/10.1016/j.ecss.2007.08.005

Peliz A., Dubert J., Marchesiello P., et al. 2007. Surface circulation in the Gulf of Cadiz: Model and mean flow structure. J. Geophys. Res. 112: 429-436. http://dx.doi.org/10.1029/2007JC004159

Powell T.P., Lewis C.V., Curchister E.N., et al. 2006. Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery. J. Geophys. Res. 111: 1877-1898. http://dx.doi.org/10.1029/2004JC002506

Sarhan T.J., García Lafuente M., Vargas J.M., et al. 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23: 317-331. http://dx.doi.org/10.1016/S0924-7963(99)00068-8

Shchepetkin A., McWilliams J. 2003. A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic Model with a Non-Aligned Vertical Coordinate. J. Geophys. Res. 108: 3090. http://dx.doi.org/10.1029/2001JC001047

Shchepetkin A., McWilliams J. 2005. The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Model. 9: 347-404. http://dx.doi.org/10.1016/j.ocemod.2004.08.002

Smolarkiewicz P.K., Margolin L.G. 1998. MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 140: 459-480. http://dx.doi.org/10.1006/jcph.1998.5901

Solé J., Ruiz S., Pascual A., et al. 2012. Ocean color response to wind forcing in the Alboran Sea: A new forecasting method. J. Mar. Syst. 98: 1-8. http://dx.doi.org/10.1016/j.jmarsys.2012.02.007

Uppala S.M., Kållberg P.W., Simmons A.J., et al. 2005. The ERA- 40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961-3012. http://dx.doi.org/10.1256/qj.04.176

von Storch H., Zwiers F.W. 2001. Statistical Analysis in Climate Research, Cambridge Univ. Press, 484 pp.




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es