sm84n2-5031

Bathyal cumacean assemblages from the southern margin of the Cap Ferret Canyon (SE Bay of Biscay)

Jordi Corbera 1, Jean Claude Sorbe 2†

1 Carrer Gran 90, 08310 Argentona, Catalonia, Spain.
(JC) (Corresponding author) E-mail:corberajordi@gmail.com. ORCiD ID:https://orcid.org/0000-0003-3583-3929
2 Muséum national d’Histoire naturelle, Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France.
deceased on 30 December 2019

Summary: The structure of the cumacean assemblages from the southern margin of the Cap Ferret Canyon was studied at 13 stations ranging from 346 to 1099 m depth with a modified Macer-GIROQ suprabenthic sledge (four superimposed nets; 0.5 mm mesh size). A total of 1885 specimens were collected and classified into 5 families and 42 species. The total abundances fluctuated between 2.8 ind./100 m2 (station TS04; 484-485 m) and 55.8 ind./100 m2 (station TS08; 714-708 m). The highest values of species richness and diversity were recorded at station TS13 (1097-1099 m): S=25 species; H’(log2)=4.05. The near-bottom vertical distribution of the cumacean fauna showed the same pattern at all stations: at least 60% of the individuals were sampled by the lower net of the sledge and a drastic abundance decrease occurred between the two lowermost water layers sampled by the sledge. The multivariate analysis carried out on abundance data discriminated three main groups of stations distributed across depth (TS09 excluded): group Ia (346-485 m) characterized by the dominance of Nannastacidae (57.2%) at family level and Campylaspis sulcata, Leptostylis macrura at species level; group Ib (522-714 m) characterized by the dominance of Nannastacidae (66.1%) at family level and Campylaspis squamifera, C. laevigata and Leptostylis macrura at species level; and group II (790-1099 m) characterized by the dominance of Diastylidae (40.3%) at family level and Makrokylindrus (Adiastylis) josephinae, Leucon (Epileucon) pusillus and Diastyloides serratus at species level. According to this analysis, the main faunal change occurs between group I and II between 714 and 790 m, in relation to changes in the texture of surficial sediments. Although bathyal cumacean assemblages appear to be less abundant than those studied on continental shelves, they are significantly more diverse. However, such results could be in part related to the use of different sampling methods.

Keywords: Cumacea; assemblages; suprabenthos; bathyal; Bay of Biscay; NE Atlantic Ocean.

Comunidades batiales de cumáceos en el margen sur del cañón de Cap Ferret (SE del golfo de Vizcaya)

Resumen: Se ha estudiado la estructura de las comunidades de cumáceos del margen sur del cañón de Cap Ferret en 13 estaciones, distribuídas desde los 346 hasta los 1099 m de profundidad con un patín suprabentónico Macer-GIROQ modificado (cuatro redes superpuestas; 0.5 mm de malla). En total, se recolectaron 1885 especímenes que fueron clasificados en cinco familias y 42 especies. La densidad total varió entre 2.8 ind./100 m2 (estación TS04; 484-485 m) y 55.8 ind./100 m2 (estación TS08; 714-708 m). Los valores máximos de riqueza específica y diversidad se obtuvieron en la estación TS13 (1097-1099 m): S=25 especies; H’(log2)=4.05. La distribución vertical cercana al fondo de la fauna de cumáceos mostró el mismo patrón en las diferentes estaciones: al menos el 60% de los individuos fue muestreado en la red inferior del patín y se observó un descenso drástico de la abundancia entre las dos capas de agua inferiores muestreadas por el patín. El análisis multivariante llevado a cabo con los datos de densidad discrimina tres grupos principales de estaciones (excluida TS09) distribuidos según la profundidad: el grupo Ia (346-485 m) caracterizado por la dominancia de los Nannastacidae (57.2%) a nivel de familia, y por Campylaspis sulcata y Leptostylis macrura a nivel de especie; el grupo Ib (522-714 m) caracterizado también por la dominancia de los Nannastacidae (66.1%) a nivel de familia, pero por Campylaspis squamifera, C. laevigata y Leptostylis macrura a nivel de especie; el grupo II (790-1099 m) caracterizado por la dominancia de los Diastylidae (40.3%) a nivel de familia, y por Makrokylindrus (Adiastylis) josephinae, Leucon (Epileucon) pusillus y Diastyloides serratus a nivel de especie. De acuerdo con este análisis, el principal cambio faunístico ocurre entre los grupos I y II entre 714 y 790 m, relacionado con cambios en la textura de los sedimentos superficiales. Aunque las comunidades de cumáceos batiales parecen ser menos densas que las estudiadas en la plataforma continental, son significativamente más diversas. No obstante, estos resultados podrían estar en parte relacionados con el uso de métodos de muestreo diferentes.

Palabras clave: Cumacea; comunidades; suprabenthos; batial; golfo de Bizcaya; océano Atlántico NE.

Citation/Como citar este artículo: Corbera J., Sorbe J.C. 2020. Bathyal cumacean assemblages from the southern margin of the Cap Ferret Canyon (SE Bay of Biscay). Sci. Mar. 84(2): 167-179. https://doi.org/10.3989/scimar.05031.07A

Editor: J.A. Cuesta.

Received: January 9, 2020. Accepted: April 30, 2020. Published: May 11, 2020.

Copyright: © 2020 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

Contents

Summary
Resumen
Introduction
Materials and methods
Results
Discussion
Conclusions
Acknowledgements
References

INTRODUCTIONTop

Cumaceans (more than 1750 known species; see Watling and Gerken 2019Watling L., Gerken S. 2019. World Cumacea Database. World Register of Marine Species. Cumacea. Accessed on 2019-02-03 through: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1137) are small peracarid crustaceans widely distributed from intertidal to hadal bottoms (Jones 1969Jones N.S. 1969. The systematics and distribution of Cumacea from deeps exceeding 200 meters. Galathea Rep. 10: 99-180.) and showing the highest diversity in bathyal environments (Jones and Sanders 1972Jones N.S., Sanders H.L. 1972. Distribution of Cumacea in the deep Atlantic. Deep-Sea Res. 19: 737-745., Reyss 1973Reyss D. 1973. Distribution of Cumacea in the deep Mediterranean. Deep-Sea Res. 20: 1119-1123., Gage and Tyler 1992Gage J., Tyler P. 1992. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press.), a bathymetric distributional pattern also recognized for most benthic taxa (Rex et al. 1997Rex M., Etter R., Stuart C. 1997. Large-scale patterns of species diversity in the deep-sea benthos. In: Ormond R.F.G., Gage J.D., Angel M.V. (eds) Marine biodiversity: patterns and processes, Cambridge University Press, pp 94-121., Rex and Etter 2010Rex M., Etter R. 2010. Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge and London.). Furthermore, they represent one of the main faunal components of marine suprabenthic assemblages (Mees and Jones 1997Mees J., Jones M.B. 1997. The hyperbenthos. Oceanogr. Mar. Biol. Annu. Rev. 35: 221-255.) because they live close to the sediment-water interface, burrowing in the top layer substratum or swimming in the near-bottom water (see Foxon 1936Foxon G. 1936. Notes on the natural history of certain sand-dwelling Cumacea. Ann. Mag. Nat. Hist. 17: 377-393., Forsman 1938Forsman B. 1938. Untersuchungen über die Cumaceen des Skagerraks. Zool. Bid. Uppsala 18: 1-161., Dixon 1944Dixon A. 1944. Notes on certain aspects of the biology of Cumopsis goodsiri (Van Beneden) and some other cumaceans in relation to their environment. J. Mar. Biol. Ass. U.K. 26: 61-71.).

The deep cumacean fauna of the NE Atlantic Ocean (including the Bay of Biscay) is probably one of the best known in the world thanks to the taxonomical works of Bonnier (1896)Bonnier J.J. 1896. Édriophthalmes. Résultats Scientifiques de la Campagne du «Caudan» dans le Golfe de Gascogne, août-septembre 1895. Ann. Univ. Lyon 26: 528-562., Fage (1929)Fage L. 1929. Cumacés et Leptostracés provenant des campagnes du Prince Albert 1er de Monaco. Résult. Camp. Sci. Albert 1er Prince Monaco 77: 3-51., Reyss (1974aReyss D. 1974a. Contribution à l’étude des cumacés de profondeur de l’Atlantique nord: le genre Makrokylindrus Stebbing. Crustaceana 26: 5-28., bReyss D. 1974b. Contribution à l’étude des cumacés de profondeur en Atlantique: le genre Diastyloides Sars, 1900. Crustaceana 27: 285-293., 1978)Reyss D. 1978. Cumacés de profondeur de l’Atlantique nord. Famille des Lampropidae. Crustaceana 35: 1-21., Jones (1974Jones N.S. 1974. Campylaspis species (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 27: 247-300., 1984Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 46: 207-289., 1985)Jones N.S. 1985. Distribution of the Cumacea. In: Laubier L., Monniot C. (eds), Peuplements profonds du golfe de Gascogne: campagnes BIOGAS. IFREMER, Brest, pp 429-433. and Bishop (1981aBishop J.D.D. 1981a. Two new leuconids (Peracarida, Cumacea) of widespread occurrence in the deep Atlantic. Crustaceana 40: 144-159., b)Bishop J.D.D. 1981b. A revised definition of the genus Epileucon Jones (Crustacea, Cumacea), with descriptions of species from the deep Atlantic. Philos. Trans. R. Soc. Lond. B 291: 353-409. but also to the pioneering study of Lagardère (1977)Lagardère J.-P. 1977. Recherches sur la distribution verticale et sur l’alimentation des crustacés décapodes benthiques de la pente continentale du golfe de Gascogne. Analyse des groupements carcinologiques. Bull. Cent. Etud. Rech. Sci. Biarritz 2: 367-440. on their bathymetric distribution in the southern part of the Bay of Biscay. However, quantitative information on the structure of the corresponding taxocœnoses remains very scarce in this area. To fill this gap, a new research programme was initiated in 1984 on the structure of bathyal suprabenthic communities from the southern margin of the Cap Ferret Canyon (SE Bay of Biscay, off Arcachon Bay). During the ESSAIS and ECOFER cruises carried out in 1989, a new set of stations located along a bathymetric gradient was sampled with a suprabenthic sledge. The abundant material collected with this gear was studied at the highest taxonomical level (Dauvin et al. 1995Dauvin J.-C., Sorbe J.-C, Lorgeré J.-C 1995. Benthic Boundary Layer macrofauna from the upper continental slope and the Cap Ferret canyon (Bay of Biscay). Oceanol. Acta 18: 113-122.) as well as at the lowest one for all the suprabenthic fauna collected at three stations (Elizalde et al. 1993aElizalde M., Sorbe J.-C, Dauvin J.-C 1993a. Las comunidades suprabentónicas batiales del golfo de Vizcaya (margen sur del cañón de Cap-Ferret): composición faunística y estructura. Publ. Espec. Inst. Esp. Oceanogr. 11: 247-258., Elizalde 1994Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.) and for mysids (Elizalde et al. 1991Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144.) and amphipods (Dauvin and Sorbe 1995Dauvin J.-C., Sorbe J.-C. 1995. Suprabenthic amphipods from the southern margin of the Cap-Ferret canyon (Bay of Biscay, Northeastern Atlantic Ocean): abundance and bathymetric distribution. Pol. Arch. Hydrobiol. 42: 441-460.) according to the species identification progress. According to Dauvin et al. (1995)Dauvin J.-C., Sorbe J.-C, Lorgeré J.-C 1995. Benthic Boundary Layer macrofauna from the upper continental slope and the Cap Ferret canyon (Bay of Biscay). Oceanol. Acta 18: 113-122., cumaceans are the fourth most abundant group in this material (5.6% of the total collected fauna), after isopods (50.8%), amphipods (22.7%) and mysids (14.1%), and their percentage contribution increases with depth in the study area (0.5%-22.4% of the whole fauna collected at each sampling station). The present work is a new contribution to the knowledge of bathyal suprabenthic assemblages from the Cap Ferret area aimed at describing patterns of bathymetric as well as the near-bottom vertical distribution of cumacean species, estimating abundance of individuals and characterizing inter-specific associations.

MATERIALS AND METHODSTop

Study area

The study area is located on bathyal soft bottoms from the southern margin of the Cap Ferret Canyon. In that area, surficial sediments were sampled during previous surveys with box corers for granulometric analyses and estimation of their organic content (see data in Elizalde et al. 1991Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144., 1993bElizalde M., Weber O., Sorbe J.-C. 1993b. Influence des caractères sédimentologiques sur la distribution des crustacés benthiques de la pente atlantique (Golfe de Gascogne; marge sud du canyon du Cap-Ferret). Actes du IIIe Colloque international «Océanographie du Golfe de Gascogne», pp. 269-273., Elizalde 1994Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.). Etcheber et al. (1999)Etcheber H., Relexans J.-C., Beliard M., et al. 1999. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res. II 46: 2249-2288. synthesized the whole available sedimentological information accumulated in the Cap Ferret region (canyon and its lateral margins). On the southern margin of the canyon, the bathymetric distribution of the sediment fractions is clearly related to the general morphology of the area, showing a narrow sandy lobe extending down to 800 m depth, to the north of the study area. This feature is probably related to the impact of alongslope bottom currents limiting the local deposition of fine particles (see Durrieu de Madron et al. 1999Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.). In the study area, the mean grain size decreases with depth, from 160 µm at the shelf break to a value stabilized around 10 µm from about 600 m down to 3000 m. Conversely, the carbon organic content of sediments (measured in the 1 cm top layer of cores, expressed as % of sediment dry weight) increases with depth, between 0.23% at the shelf break and 1.36% at around 1000 m depth. The dominant fractions (>50%) allow two sedimentary zones to be distinguished according to depth: an upper muddy sand zone characterized by a decreasing dominance of fine sands with depth and a lower mud zone characterized by a dominance of fine silts and clay, and by stabilized values of the mean grain size according to depth. Following the definition given by Stanley et al. (1983)Stanley D.J., Addy S.K., Behrens E.W. 1983. The mudline: variability of its position relative to shelfbreak. In: Stanley D.J., Moore G.T., et al. (eds). The Shelfbreak: Critical Interface on Continental Margins, Special Publications of SEPM., the mud-line is therefore located at about 600 m depth in the study area, a limit representing the erosion-deposition boundary beneath which the organic content of surficial sediments increases in response to the deposition of silty and/or clayey particles (Etcheber et al. 1999Etcheber H., Relexans J.-C., Beliard M., et al. 1999. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res. II 46: 2249-2288.).

According to Durrieu de Madron et al. (1999)Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027., two superimposed water masses were detected during the ECOFER experiments in the upper part of the Cap Ferret region, inferred from CTD profiles within the Cap Ferret Canyon: (1) a low-salinity water mass extending between 200 and 600 m in the water column, referred to as Eastern North Atlantic Water and characterized by a salinity minimum of 35.51 and a temperature of 10.8°C at 500 m water depth; and (2) a high saline core of Mediterranean Overflow Water detected between 700 and 1300 m water depth, characterized a salinity maximum of 35.76, a temperature of 9.8°C and an oxygen minimum of 3.6 ml L–1 at about 1000 m water depth. Furthermore, an intermediate nepheloid layer centred at a depth of around 500 m and horizontally detached from the seafloor was detected at the head and on the flanks of the canyon during all five ECOFER experiments (1989-1991). It is supposed that both Eastern North Atlantic Water and Mediterranean Overflow Water impinge on the slope in the study area (canyon southern margin) and therefore impact the structure of the underlying bathyal benthic communities.

Sampling

During the ESSAIS I, ESSAIS II and ECOFER I surveys carried out between April and July 1989, 13 stations ranging from 346 to 1099 m depth (Fig. 1; Table 1) were sampled with a modified Macer-GIROQ suprabenthic sledge (full description in Dauvin et al. 1995Dauvin J.-C., Sorbe J.-C, Lorgeré J.-C 1995. Benthic Boundary Layer macrofauna from the upper continental slope and the Cap Ferret canyon (Bay of Biscay). Oceanol. Acta 18: 113-122.). This gear is equipped with four superimposed nets (0.5 mm mesh size) that simultaneously sample four water layers above the seafloor (N1, 10-40 cm; N2, 45-75 cm; N3, 80-110 cm; N4, 115-145 cm) and with an opening-closing system of these nets acting by contact with the seafloor. Each net is fixed on a rectangular metallic box (height, 30 cm; width, 60 cm) equipped with a TSK flowmeter that estimates the haul length and the bottom area swept by the sledge during each haul (calculated from the mean value of the available flowmeter measurements; see Table 1). Based on these estimates, the standardized abundances of species are expressed in individuals/100 m2 (cumulative values from the four sledge nets N1-N4). The sledge was towed over the seafloor at a speed of 1-2 knots. All samplings were carried out during daytime (between 8 and 18 h), except TS06 and TS13, which were carried out at night before midnight (see Table 1). The collected material was fixed on board with a solution of 10% neutral formalin in sea water until sorting into major taxonomical groups at the laboratory. All groups (including cumaceans) were then transferred to and preserved in 70% ethanol until species identification.

figure

Full size image

Fig. 1. – Geographical location of the 13 slope stations sampled with a suprabenthic sledge on the southern margin of the Cap Ferret Canyon (ESSAIS and ECOFER oceanographic cruises). Station symbols: green triangles, assemblage Ia; blue squares, assemblage Ib; red diamonds, assemblage II; black triangles, stations outside the groups or not analysed (see text).

Table 1. – Haul characteristics and geographical position of stations sampled with a suprabenthic sledge on the southern margin of the Cap Ferret Canyon during the ESSAIS and ECOFER cruises. Estimated bottom area swept by the sledge during each haul (calculated from TSK flowmeter measurements). a: time and position of the boat at the beginning of the haul on the bottom; b: depth (below the boat) at the beginning and at the end of the haul on the bottom.

Cruise Haul code Date Timea Positiona Depthb Area
(d/m/y) (h:m) N W (m) (m2)
ESSAIS I TS01 21/4/89 15:50 44°33.30′ 2°08.30′ 346-347 512
ESSAIS II TS02 18/5/89 08:11 44°32.58′ 2°08.17′ 390-383 171
ESSAIS II TS03 18/5/89 17:59 44°33.11′ 2°09.85′ 425-437 384
ESSAIS II TS04 18/5/89 10:43 44°34.38′ 2°10.18′ 485-484 443
ECOFER I TS05 01/7/89 13:20 44°35.57′ 2°11.21′ 523-522 519
ESSAIS I TS06 21/4/89 22:27 44°33.40′ 2°10.70′ 608-611 807
ESSAIS I TS07 21/4/89 17:19 44°31.90′ 2°10.80′ 660-714 928
ECOFER I TS08 01/7/89 15:59 44°36.21′ 2°12.84′ 714-708 375
ESSAIS II TS09 18/5/89 16:31 44°33.22′ 2°12.48′ 740-754 370
ESSAIS II TS10 18/5/89 13:36 44°33.10′ 2°13.13′ 791-790 328
ESSAIS II TS11 18/5/89 15:00 44°32.89′ 2°14.24′ 923-924 279
ESSAIS I TS12 22/4/89 8:33 44°32.30′ 2°15.10′ 1024-1043 477
ESSAIS II TS13 17/5/89 23:10 44°34.19′ 2°16.18′ 1097-1099 382

Data analyses

Following Brunel (1972)Brunel P. 1972. The Gaspe cod ecosystem in the Gulf of St. Lawrence. III. The daily and seasonal vertical migrations of cod (Gadus morhua) in 1960-62. Nat. Can. 99: 287-357. and Sainte-Marie and Brunel (1985)Sainte-Marie B., Brunel P. 1985. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. Mar. Ecol. Prog. Ser. 23: 57-69., an index K of swimming activity above the bottom was computed for each species, expressed as follows:

K1 = ∑N1/∑Nt
K2 = ∑N2/∑Nt
K3 = ∑N3/∑Nt
K4 = ∑N4/∑Nt

where ∑N1, ∑N2, ∑N3 and ∑N4 are the abundances (number of individuals) in the 10-40, 45-75, 80-110 and 115-145 cm water layers above the bottom, respectively; and ∑Nt is the total number of individuals in the four water layers sampled by the sledge (cumulative values from all available water layers and stations, excluding TS09). This K index can vary from 0 (when a given species is absent at the level considered) to 1 (when all the specimens are sampled in the same water layer).

Abundance data (Dt, ind./100 m2) were analysed using the Plymouth Routine in Multivariate Ecological Research (PRIMER v 5.0) software package (Clarke and Gorley 2001Clark K.R., Gorley R.N. 2001. Primer v5: User Manual/Tutorial. Plymouth Marine Laboratory.). Univariate diversity indices (Shannon-Wiener diversity H’ using log2, Pielou evenness J’) were calculated from species abundances with the DIVERSE routine. A matrix of similarity between samples was constructed by means of the Bray-Curtis measure applied to square-root transformed species abundances in order to down-weight the contribution of abundant species. From this matrix, the 12 suprabenthic samples (sample TS09 excluded – damaged material) were classified by cluster analysis based on the complete linkage sorting algorithm. A graphical ordination was carried out on the same matrix using non-metric multidimensional scaling. Finally, the SIMPER routine was used to identify species that most contributed to within-group similarity and between-group dissimilarity.

Mean values of data sets were statistically compared using t tests according to Dagnelie (1975)Dagnelie P. 1975. Théorie et méthodes statistiques. Volume II: les méthodes de l’inférence statistique. Les Presses Agronomiques de Gembloux, 463 pp..

RESULTSTop

A total of 1885 cumacean specimens were collected. Of these, 87.7% were identified and classified into 5 families (Nannastacidae, 47.5%; Diastylidae, 30.1%; Leuconidae, 12.7%; Lampropidae, 6.9%; Bodotriidae, 2.8%) and 42 species (Table 2; Supplementary Material Table S1). The number of species (species richness) per station ranged from 5 at stations TS01 and TS02 to 25 at station TS13 (Table 3). The total abundances fluctuated between a minimum of 2.8 ind./100 m2 at station TS04 and a maximum of 55.8 ind./100 m2 at station TS08. The diversity indexes H’ ranged between 1.98 (TS01) and 4.05 (TS13). All these three structural indices are significantly correlated with depth (species richness r=0.960, p<0.001; abundances r=0.732, p<0.01; diversity r=0.927, p<0.001). Even at station TS07 where the nannastacid Camplylaspis squamifera was highly dominant (45.9% of the individuals), the evenness values, J’, were relatively high (≥0.67) but were correlated neither with depth (r=0.078, p>0.05) nor with H’ values (r=0.093, p>0.05).

Table 2. – Abundance of cumacean species sampled with a suprabenthic sledge at 13 stations on the southern margin of the Cap Ferret Canyon and relative abundance (%) of corresponding cumacean families. TS09 station not studied at family/species level due to bad conservation of material. Dt, cumulative abundance (ind./100 m2) in the 3 or 4 near-bottom water layers sampled by the sledge; –, 0; *, damaged specimen.

Haul code TS01 TS02 TS03 TS04 TS05 TS06 TS07 TS08 TS09 TS10 TS11 TS12 TS13
Depth (m) 346-347 390-383 425-437 485-484 523-522 608-611 660-714 714-708 740-754 791-790 923-924 1024-1043 1097-1099
Sampled area (m2) 512 171 384 443 519 807 928 375 370 328 279 477 382
Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt % Dt %
Family BODOTRIIDAE 20.0 3.9 9.9 4.2 10.6
Bathycuma brevirostre 1.1 0.4 1.6
Cyclaspis longicaudata 1.2 2.9 1.0 2.4
Cyclaspoides sarsi 0.6 1.3
Iphinoe serrata 0.6
Family DIASTYLIDAE 47.6 40.0 22.8 64.3 30.5 22.5 17.5 13.4 41.2 42.7 36.9 41.1
Diastylis cornuta 0.2 0.1
Diastylis tumida 1.2 0.7
Diastyloides biplicatus 0.6 2.7 0.5 0.3 0.7
Diastyloides serratus 1.0 0.5 0.2 5.0 0.9 0.5 4.3 2.4 3.2 4.8 6.8
Leptostylis longimana 2.2
Leptostylis macrura 2.0 1.8 1.6 9.6 3.1 2.4 2.4 0.6 0.3
Leptostylis sp.A 0.2 0.4
Leptostylis sp.B 0.3
Makrokylindrus (A.) anomalus 0.2
Makrokylindrus (A.) josephinae 0.6 0.1 1.1 0.8 7.6 7.5 8.8 5.2
Makrokylindrus (A.) longicaudatus 1.1 1.0
Makrokylindrus (A.) longipes 0.4 1.6
Makrokylindrus sp.* 1.8
Vemakylindrus hastatus 0.6 0.1 0.1 0.6 1.1 2.9 4.5
Family LAMPROPIDAE 6.4 4.9 7.1 15.2 4.5 4.5 6.3 7.8 9.9 3.7 4.2
Hemilamprops normani 2.1 3.2 1.0 1.8
Mesolamprops denticulatus 0.4 0.5 0.2 7.1 1.4 1.0 2.7
Platysympus typicus 0.6 0.2 0.8 0.4 0.6
Platytyphlops orbicularis 0.3 0.4 0.2 0.3
Family LEUCONIDAE 2.0 5.4 0.4 3.8 14.6 14.3 48.9 21.5
Eudorella cf. parvula 0.1 0.3 4.6 0.5
Ithyleucon sorbei 1.9 2.4
Leucon (C.) tener 0.6 0.7 1.3
Leucon (E.) ensis 1.7 0.8
Leucon (E.) pusillus 2.4 3.6 11.1 4.2
Leucon (L.) affinis 1.0 1.2 0.1 0.8
Leucon (L.) sp.* 0.4 1.7 0.5
Leucon (M.) siphonatus 0.4 1.3 1.2 1.1 2.5 1.0
Family NANNASTACIDAE 46.0 40.0 72.3 28.6 49.3 66.0 77.2 76.5 29.6 17.8 6.3 13.6
Campylaspis glabra 0.4 1.0 0.2 3.5 3.0 2.0 2.9 0.9 0.4
Campylaspis laevigata 0.2 3.5 3.8 3.8 7.5 0.3 2.5 0.5
Campylaspis nitens 0.2 0.3 0.6 0.5
Campylaspis rostrata 0.3 0.2
Campylaspis squamifera 0.5 0.2 11.9 12.4 12.3 20.0 2.4 1.4 0.5
Campylaspis sulcata 2.5 0.6 4.2 2.3
Cumella (C.) divisa 0.3
Cumellopsis puritani 0.1 0.9
Nannastacus atlanticus 0.6 0.1
Procampylaspis armata 0.2 0.4 0.6 10.4 4.9 2.9 1.0 1.8
Procampylaspis omnidion 0.8
Schizocuma spinoculatum 2.9
Styloptocuma gracillimum 1.6 0.2 3.5 1.1 0.8 1.6 0.3 0.4 0.3
Cumacea unidentified * 1.5 3.0 0.5 1.6 0.1 0.4 0.9 2.9 2.2 5.4 4.5 9.0
Σ 6.3 100 3.0 100 10.1 100 2.8 100 50.5 100 31.5 100 26.8 100 55.8 100 50.3 30.8 100 40.5 100 48.0 100 49.9 100

Table 3. – Species richness (S), total abundance (Dt, ind./100 m2), Shannon-Wiener diversity index (H’, log2) and Pielou evenness (J’) of the cumacean fauna sampled with a suprabenthic sledge at 13 stations on the southern margin of the Cap Ferret Canyon (values from nets N1-N4). –, no data.

Haul code S Dt H’ J’
TS01 5 6.3 1.98 0.85
TS02 5 3.0 2.32 1.00
TS03 7 10.1 2.37 0.84
TS04 7 2.8 2.09 0.75
TS05 13 50.5 3.05 0.83
TS06 16 31.5 2.88 0.72
TS07 17 26.8 2.76 0.67
TS08 13 55.8 2.86 0.77
TS09 50.3
TS10 19 30.8 3.53 0.83
TS11 22 40.5 3.93 0.88
TS12 22 48.0 3.60 0.81
TS13 25 49.9 4.05 0.87

At family level, samples from the 0-145 cm water layer were numerically dominated by Nannastacidae or Diastylidae in the shallower part of the study area (although with low abundances between 346 and 485 m), and the Nannastacidae were progressively replaced by Leuconidae below 700 m depth. At species level (Table 2), the highest abundances in the 0-145 cm water layer were recorded for the Nannastacidae Campylaspis squamifera (20.0 ind./100 m2, TS08), the Leuconidae Leucon (Epileucon) pusillus (11.1 ind./100 m2, TS12) and the Nannastacidae Procampylaspis armata (10.4 ind./100 m2, TS08). The Diastylidae Diastyloides serratus showed the widest bathymetric distribution in the study area, being captured between 346 and 1099 m depth (present at 11 stations).

As shown in Figure 2, the near-bottom vertical distribution of the cumacean fauna showed the same pattern at every station: at least 60.0% of the individuals were sampled by the lower net of the sledge, whereas only 0% to 2.7% of them were captured at the uppermost level, demonstrating that these small peracarids are concentrated close to the seafloor during both daytime and night-time (see the case of the night-time samples TS06 and TS13). Furthermore, both families and species showed a drastic abundance decrease between the N1 and N2 lowermost waters layers and species richness showed the same vertical decreasing trend (see Table 4 and S1). Twenty-one species were exclusively sampled in the 10-40 cm water layer and therefore had a K1 index of 1: Bathycuma brevirostre, Cyclaspoides sarsi, Diastylis tumida, Leptostylis longimana, Leptostylis sp.A, Leptostylis sp.B, Makrokylindrus (Adiastylis) anomalus, M. (A.) longipes, Vemakylindrus hastatus, Platysympus typicus, Platytyphlops orbicularis, Leucon (Crymoleucon) tener, Leucon (Epileucon) ensis and Leucon (Leucon) sp., Campylaspis nitens, C. rostrata, Cumella (Cumella) divisa, Cumellopsis puritani, Nannastacus atlanticus, Procampylaspis omnidion and Schizocuma spinoculatum. The other species showed high K1 values (range: 0.50-0.98) in the lowermost level and lower K2-K4 decreasing values (range: 0.33-0) in the upper ones. Only six species were also sampled in the 115-145 cm water layer, with a generally very low K4 index, probably attesting their higher swimming abilities than the preceding ones: Diastylis cornuta, Diastyloides serratus; Hemilamprops normani, Mesolamprops denticulatus; Campylaspis glabra and Procampylaspis armata. Iphinoe serrata, a shelf-origin bodotriid, was sporadically sampled in the 80-110 cm water layer of station TS02 (only one specimen caught).

figure2

Full size image

Fig. 2. – Percentage contribution of nets N1-N4 samples to the whole suprabenthic cumacean fauna sampled by the sledge at each of the 13 slope stations from the southern margin of the Cap Ferret Canyon.

Table 4. – Index (K) of swimming activity (see text) calculated for cumacean species sampled by a sledge in the 10-40, 45-85, 90-110 and 115-145 cm near-bottom water layers during the ESSAIS and ECOFER surveys. ∑Nt, total number of specimens (cumulative values from all available water layers and stations, excluding TS09).

Taxa ∑Nt K1 K2 K3 K4
Family BODOTRIIDAE
Bathycuma brevirostre 11 1.00 0.00 0.00 0.00
Cyclaspis longicaudata 26 0.88 0.12 0.00 0.00
Cyclaspoides sarsi 8 1.00 0.00 0.00 0.00
Iphinoe serrata 1 0.00 0.00 1.00 0.00
Family DIASTYLIDAE
Diastylis cornuta 2 0.50 0.00 0.00 0.50
Diastylis tumida 6 1.00 0.00 0.00 0.00
Diastyloides biplicatus 33 0.94 0.06 0.00 0.00
Diastyloides serratus 128 0.72 0.13 0.08 0.07
Leptostylis longimana 6 1.00 0.00 0.00 0.00
Leptostylis macrura 133 0.97 0.02 0.01 0.00
Leptostylis sp.A 3 1.00 0.00 0.00 0.00
Leptostylis sp.B 1 1.00 0.00 0.00 0.00
Makrokylindrus (A.) anomalus 1 1.00 0.00 0.00 0.00
Makrokylindrus (A.) josephinae 123 0.93 0.04 0.03 0.00
Makrokylindrus (A.) longicaudatus 8 0.88 0.13 0.00 0.00
Makrokylindrus (A.) longipes 7 1.00 0.00 0.00 0.00
Vemakylindrus hastatus 39 1.00 0.00 0.00 0.00
Family LAMPROPIDAE
Hemilamprops normani 28 0.93 0.04 0.00 0.04
Mesolamprops denticulatus 72 0.82 0.08 0.07 0.03
Platysympus typicus 12 1.00 0.00 0.00 0.00
Platytyphlops orbicularis 4 1.00 0.00 0.00 0.00
Family LEUCONIDAE
Eudorella cf. parvula 26 0.96 0.00 0.04 0.00
Ithyleucon sorbei 18 0.94 0.06 0.00 0.00
Leucon (C.) tener 9 1.00 0.00 0.00 0.00
Leucon (E.) ensis 11 1.00 0.00 0.00 0.00
Leucon (E.) pusillus 87 0.98 0.01 0.01 0.00
Leucon (L.) affinis 19 0.89 0.05 0.05 0.00
Leucon (L.) sp. 11 1.00 0.00 0.00 0.00
Leucon (M.) siphonatus 31 0.87 0.06 0.06 0.00
Family NANNASTACIDAE
Campylaspis glabra 84 0.9 0.06 0.01 0.02
Campylaspis laevigata 123 0.95 0.04 0.01 0.00
Campylaspis nitens 8 1.00 0.00 0.00 0.00
Campylaspis rostrata 2 1.00 0.00 0.00 0.00
Campylaspis squamifera 368 0.91 0.07 0.01 0.00
Campylaspis sulcata 42 0.98 0.02 0.00 0.00
Cumella (C.) divisa 1 1.00 0.00 0.00 0.00
Cumellopsis puritani 9 1.00 0.00 0.00 0.00
Nannastacus atlanticus 2 1.00 0.00 0.00 0.00
Procampylaspis armata 85 0.95 0.02 0.01 0.01
Procampylaspis omnidion 4 1.00 0.00 0.00 0.00
Schizocuma spinoculatum 11 1.00 0.00 0.00 0.00
Styloptocuma gracillimum 50 0.98 0.00 0.02 0.00
Global 1653 0.92 0.05 0.02 0.01

As presented in Figure 3, the cluster analysis carried out on abundance data reveals the existence of three main groups of stations distributed over depth (station TS02 being outside the groups), and the multidimensional scaling ordination shows similar results to those of the dendrogram, with an excellent stress value of 0.05. As shown in Table 5, the average dissimilarity between these groups was ≥63.9, with the highest value recorded between groups Ia and II. Two nannastacids mainly contributed to the total dissimilarity between groups Ia and Ib: Campylaspis squamifera (20.73%) and C. laevigata (12.10%). Dissimilarity between other paired groups was due to a higher number of contributing species, with Makrokylindrus (Adiastylis) josephinae (9.90%) and Campylaspis squamifera (8.85%) as the top species for paired groups Ia-II and Ib-II, respectively.

figure3

Full size image

Fig. 3. – Hierarchical cluster analysis (A) and non-metric multidimensional scaling (B) of the 12 slope stations (TS09 excluded; see text) based on square-root transformed abundances and Bray-Curtis similarity measure.

Table 5. – Average dissimilarity between the 3 main station groups discriminated by the multivariate analysis of the 12 sampling stations (station TS02 discarded) and contribution of cumacean species to total dissimilarity. A cut-off at a cumulative dissimilarity of 85% was applied. Av. diss., average dissimilarity.

Groups Ia vs Ib ٪ Groups Ia vs II % Groups Ib vs II ٪
Av. diss.: 63.9 Av. diss.: 86.85 Av. diss.: 70.09
Campylaspis squamifera 20.73 Makrokylindrus (A.) josephinae 9.90 Campylaspis squamifera 8.85
Campylaspis laevigata 12.10 Leucon (E.) pusillus 7.95 Leucon (E.) pusillus 6.81
Procampylaspis armata 7.46 Procampylaspis armata 5.90 Makrokylindrus (A.) josephinae 6.63
Campylaspis sulcata 6.59 Hemilamprops normani 5.15 Leptostylis macrura 5.09
Campylaspis glabra 6.14 Vemakylindrus hastatus 5.00 Mesolamprops denticulatus 4.98
Mesolamprops denticulatus 6.10 Cyclaspis longicaudata 4.86 Campylaspis laevigata 4.40
Diastyloides biplicatus 5.09 Diastyloides serratus 4.70 Hemilamprops normani 4.38
Leucon (L.) affinis 5.03 Leucon (M.) siphonatus 4.32 Cyclaspis longicaudata 4.15
Styloptocuma gracillimum 4.93 Campylaspis sulcata 4.30 Campylaspis glabra 3.92
Diastyloides serratus 4.81 Leptostylis macrura 3.63 Vemakylindrus hastatus 3.78
Leptostylis macrura 3.86 Eudorella cf. parvula 3.03 Procampylaspis armata 3.52
Makrokylindrus (A.) josephinae 3.60 Campylaspis squamifera 2.60 Leucon (L.) affinis 2.55
Bathycuma brevirostre 2.53 Styloptocuma gracillimum 2.55
Leucon (C.) tener 2.53 Diastyloides serratus 2.52
Ithyleucon sorbei 2.46 Eudorella cf. parvula 2.47
Campylaspis laevigata 2.29 Leucon (M.) siphonatus 2.44
Leucon (L.) sp. 2.28 Bathycuma brevirostre 2.20
Mesolamprops denticulatus 2.17 Ithyleucon sorbei 2.16
Platytyphlops orbicularis 2.00 Leucon (C.) tener 2.15
Diastylis tumida 1.94 Diastyloides biplicatus 1.98
Leucon (E.) ensis 1.86 Leucon (L.) sp. 1.98
Styloptocuma gracillimum 1.75 Platytyphlops orbicularis 1.70
Campylaspis glabra 1.66 Leucon (E.) ensis 1.63
Diastyloides biplicatus 1.35 Diastylis tumida 1.61
Platysympus typicus 1.30

Group Ia (3 stations between 346 and 485 m depth; average within-group similarity 63.8) is characterized by the numerical dominance of Nannastacidae (57.2%), the absence of Bodotriidae and Leuconidae and a low total abundance of 6.4±3.7 ind./100 m2 (mean±SD). Leptostylis macrura, Diastyloides serratus, Campylaspis glabra, Mesolamprops denticulatus and Campylaspis sulcata accounted for 92.0% of the average within-group similarity (Table 6). Campylaspis sulcata was the most abundant species of this assemblage, with a mean value of 2.2±2.1 ind./100 m2 (mean±SD) and a contribution of 34.9% to total group abundance, followed by Leptostylis macrura (28.1%), Styloptocuma gracillimum (9.4%), Diastyloides serratus (8.9%) and Campylaspis glabra (8.3%).

Table 6. – Biotic characteristics of the cumacean assemblages Ia, Ib and II discriminated by the multivariate analysis of abundance data (based on cumulative values from nets N1-N4). Species ranked according to their average contribution to within-group similarity (%Sim); their respective contribution (%D) to mean total abundance of each assemblage is also included. A cut-off at a cumulative similarity of 80% was applied; sd, standard deviation.

Assemblages Ia Ib II
Haul codes TS 1, 3, 4 5, 6, 7, 8 10, 11, 12, 13
Depth range (m) 346-485 522-714 790-1099
Species richness (S) range 5-7 13-17 19-25
cumulative 13 22 35
mean±sd 6.3 ± 1.2 14.8 ± 2.1 22.0 ± 2.4
Abundance (ind./100 m2) range 2.8-10.1 26.8-55.8 30.8-49.9
mean±sd 6.4 ± 3.7 41.2 ± 14.2 42.3 ± 8.7
Diversity (H’, log2) range 1.98-2.37 2.76-3.05 3.53-4.05
Mean±sd 2.15 ± 0.20 2.89 ± 0.12 3.78 ± 0.25
Evenness (J’) range 0.75-0.85 0.67-0.83 0.81-0.88
mean±sd 0.81 ± 0.06 0.75 ± 0.07 0.85 ± 0.03
Main species Leptostylis macrura Campylaspis squamifera Makrokylindrus (A.) josephinae
(%Sim / %D) (36.4 / 28.1) (24.7 / 34.4) (15.8 / 17.2)
Diastyloides serratus Campylaspis laevigata Leucon pusillus
(14.7 / 8.9) (13.6 / 11.3) (10.9 / 12.6)
Campylaspis glabra Leptostylis macrura Diastyloides serratus
(14.1 / 8.3) (11.2 / 10.6) (10.8 / 10.2)
Mesolamprops denticulatus Campylaspis glabra Procampylaspis armata
(14.1 / 5.7) (11.0 / 6.9) (7.8 / 6.3)
Campylaspis sulcata Mesolamprops denticulatus Hemilamprops normani
(12.7 / 34.9) (8.2 / 7.4) (7.5 / 4.8)
Styloptocuma gracillimum Cyclaspis longicaudata
(7.1 / 4.3) (7.0 / 4.4)
Diastyloides serratus Leucon (M.) siphonatus
(7.0 / 6.5) (6.5 / 3.4)
Vemakylindrus hastatus
(6.3 / 5.4)
Platytyphlops orbicularis
(3.1 / 0.7)
Campylaspis squamifera
(2.8 / 2.5)
Leucon (C.) tener
(2.5 / 1.6)

Group Ib (4 stations between 522 and 714 m depth; average within-group similarity 71.3) was also characterized by the dominance of Nannastacidae (66.1%) and the absence of Bodotriidae but marked by the appearance of Leuconidae and a higher total abundance than the preceding one (41.2±14.2 ind./100 m2, mea±SD). Campylaspis squamifera, C. laevigata, Leptostylis macrura, Campylaspis glabra, Mesolamprops denticulatus, Styloptocuma gracillimum and Diastyloides serratus accounted for 82.8% of the average within-group similarity (Table 6). Campylaspis squamifera was the most abundant species of this assemblage, with a mean value of 14.2±3.9 ind./100 m2 (mean±SD) and a contribution of 34.4% to total group abundance, followed by C. laevigata (11.3%), Leptostylis macrura (10.6%), Mesolamprops denticulatus (7.4%) and Procampylaspis armata (7.0%). Three species, Diastylis cornuta, Leucon (Leucon) affinis and Cumellopsis puritani, were found exclusively in this assemblage.

Group II (4 stations between 790 and 1099 m depth; average within-group similarity 61.3) was characterized by the dominance of Diastylidae (40.3%), the appearance of Bodotriidae and a total abundance of 42.3±8.7 ind./100 m2 (mean±SD). This group showed the highest mean values of species richness, total abundance and diversity indices (Table 6). Makrokylindrus (Adiastylis) josephinae, Leucon (Epileucon) pusillus, Diastyloides serratus, Procampylaspis armata, Hemilamprops normani, Cyclaspis longicaudata, Leucon (Macrauloleucon) siphonatus, Vemakylindrus hastatus, Platytyphlops orbicularis, Campylaspis squamifera and Leucon (Crymoleucon) tener accounted for 81.0% of the average within-group similarity (Table 6). Makrokylindrus (A.) josephinae was the most abundant species of this assemblage, with a mean value of 7.3±1.5 ind./100 m2 (mean±SD) and a contribution of 17.2% to total group abundance, followed by Leucon (Epileucon) pusillus (12.6%), Diastyloides serratus (10.2%), Procampylaspis armata (6.3%) and Vemakylindrus hastatus (5.4%). 18 species were found exclusively in this assemblage, demonstrating an evident renewal of the cumacean fauna at this bathymetric level: Bathycuma brevirostre, Cyclaspis longicaudata, Cyclaspoides sarsi, Leptostylis longimana, Leptostylis sp.B, Makrokylindrus (Adiastylis) anomalus, M. (A.) longicaudatus, M. (A.) longipes, Hemilamprops normani, Platytyphlops orbicularis, Ithyleucon sorbei, Leucon (Crymoleucon) tener, Leucon (Epileucon) ensis, L. (E.) pusillus, Campylaspis rostrata, Cumella (Cumella) divisa, Procampylaspis omnidion and Schizocuma spinoculatum.

DISCUSSIONTop

Lagardère (1977)Lagardère J.-P. 1977. Recherches sur la distribution verticale et sur l’alimentation des crustacés décapodes benthiques de la pente continentale du golfe de Gascogne. Analyse des groupements carcinologiques. Bull. Cent. Etud. Rech. Sci. Biarritz 2: 367-440. carried out a pioneering study on the bathyal cumacean fauna of the southeastern Bay of Biscay (composition and bathymetric distribution of species in the depth range 200-1400 m). According to modern nomenclature (see Băcescu 1992Băcescu M. 1992. Cumacea II: (Fam. Nannastacidae, Diastylidae, Pseudocumatidae, Gynodiastylidae et Ceratocumatidae). Crustaceorum Catalogus, Pars 8. SPB Academic Publishing, The Hague. 468 pp., Corbera and Sorbe 1999Corbera J., Sorbe J.C. 1999. The problematic cumacean Schizotrema atlanticum from the eastern Atlantic: redescription and ecological notes. J. Crustac. Biol. 19: 123-130.), we suggest the following equivalence between species (Lagardère’s taxa in brackets): Vemakylindrus hastatus (= Diastylis cf. hastata), Eudorella cf. parvula (= E. truncatula), Cumella (Cumella) divisa (= Cumella sp.), Nannastacus atlanticus (= Nannastacus sp.) and Styloptocuma gracillimum (= Cumella gracillimana). Within the restricted depth range 200-1000 m (comparable to the present study), Lagardère listed 37 species belonging to Nannastacidae, Diastylidae, Leuconidae, Bodotriidae and Lampropidae (decreasing order of species richness), slightly lower than the value obtained herein (43 species). Eudorella hirsuta (Sars, 1869) is probably a misidentification (= Eudorella cf. parvula?), as is Campylaspis horrida Sars, 1869 recorded on the upper slope of Arctic waters according to Jones (1984)Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 46: 207-289.. Although not recorded during the present survey, Hemilamprops roseus (Norman, 1863) and Campylaspis macrophthalma Sars, 1878 were sampled on the outer shelf adjacent to our study area (Sorbe 1984Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1.); Vaunthompsonia cristata Bate, 1858, Campylaspis verrucosa Sars, 1866 and Campylaspis vitrea Calman, 1906 were sampled in the Capbreton canyon area (Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309., 2017Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46.); and Hemilamprops cristatus (Sars, 1870) and Leucon (Epileucon) longirostris Sars, 1871 were mentioned from bathyal bottoms of the Bay of Biscay (Jones 1985Jones N.S. 1985. Distribution of the Cumacea. In: Laubier L., Monniot C. (eds), Peuplements profonds du golfe de Gascogne: campagnes BIOGAS. IFREMER, Brest, pp 429-433., Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309.). Therefore, except probable misidentified species, all cumaceans mentioned by Lagardère (1977) Lagardère J.-P. 1977. Recherches sur la distribution verticale et sur l’alimentation des crustacés décapodes benthiques de la pente continentale du golfe de Gascogne. Analyse des groupements carcinologiques. Bull. Cent. Etud. Rech. Sci. Biarritz 2: 367-440.were found again in more recent studies on the bathyal benthic cumacean fauna of the SE Bay of Biscay. Furthermore, a new genus and species, Ithyleucon sorbei, were described from the material collected during the present study (Corbera 2012Corbera J. 2012. Rare and new cumaceans (Crustacea, Peracarida) from the southern margin of the Cap Ferret Canyon (Bay of Biscay). ZooKeys 235: 73-85.), and two apparently undescribed species of the genus Leptostylis remain to be studied.

Previously reported from the NE Atlantic between Norway and British Islands but also from the Azores and the Gulf of Cadiz, Diastylis tumida (740-924 m) is mentioned for the first time in the Bay of Biscay (present study). Originally described from bathyal bottoms of the Gulf of Lion, Mesolamprops denticulatus Ledoyer, 1983 was more recently discovered in the NE Atlantic Ocean as far as the Faeroe–Shetland Channel at 259-753 m (Shalla and Bishop 2007Shalla S.H., Bishop J.D.D. 2007. Lampropidae (Crustacea: Cumacea) from the deep north-east Atlantic and the North Sea, with two new species of Hemilamprops and Mesolamprops. J. Mar. Biol. Ass. U.K. 87: 1191-1200.) as well as in the southern Bay of Biscay (Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309., Capbreton Canyon; Sorbe and Elizalde 2014Sorbe J.C, Elizalde M. 2014. Temporal changes in the structure of a slope suprabenthic community from the Bay of Biscay (NE Atlantic Ocean). Deep-Sea Res. II 106: 179-191., southern margin of the Cap Ferret Canyon).

Up to now, the structure of deep cumacean assemblages has been poorly investigated. In the southern Bay of Biscay, recent studies on bathyal suprabenthic assemblages (Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309., 2017Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46., Sorbe and Elizalde 2014Sorbe J.C, Elizalde M. 2014. Temporal changes in the structure of a slope suprabenthic community from the Bay of Biscay (NE Atlantic Ocean). Deep-Sea Res. II 106: 179-191.) showed that they constitute one of the main components of the near-bottom motile fauna (suprabenthic ecophase), in addition to amphipods, isopods and mysids. However, another part of these assemblages is known to inhabit surficial sediments constituting the endobenthic ecophase of these populations (Fage 1951Fage L. 1951. Cumacés. Faune de France. P. Lechevalier., Jones 1976Jones, N.S. 1976. British cumaceans. Synopses of the British Fauna, 7. Academic Press., Băcescu and Petrescu 1999Băcescu M., Petrescu I. 1999. Ordre des Cumacés (Cumacea Krøyer, 1846). In: Forest, J. et al. Traité de zoologie: anatomie, systématique, biologie: VII. Crustacés: III A. Péracarides. Mém. Inst. Océanogr. (Monaco) 19: 391-428.). These burrowing individuals are inadequately sampled by suprabenthic sledges, mainly designed to sample the near-bottom motile fauna (epi-/suprabenthic ecophase). Therefore, more realistic estimations of benthic cumacean abundances should ideally combine sampling with sledges and grabs/box cores. To our knowledge, such a methodology has never been implemented in the study of these benthic communities. Table 7 shows some structural data on diverse shelf and slope cumacean assemblages, sampled with either suprabenthic sledges or grabs. The abundance data (maximum recorded values for each study) given by suprabenthic sampling are in the same order of magnitude for shelf (range: 1.2-6.5 ind. m–2) and slope assemblages (range: 0.3-5.4 ind. m–2), and the corresponding mean values are statistically equal (tobs=1.256; d.f.=10; p>0.05). In shelf assemblages, these suprabenthic abundances are generally much lower than values obtained with grab sampling (range: 153-24000 ind. m–2) and far from the worldwide maximum value mentioned by Hawkinson (1992)Hawkinson C.A. 1992. Feeding ecology of gray whales in Agate Bay, California, Summers 1990 and 1991. Master’s thesis, San José State University, 45 pp. in the case of the coastal Diastylidae Diastylopsis dawsoni Smith, 1880 from Agate Bay, California (up to 119881 ind. m–2; Ekman grab).

Table 7. – Comparison of structural data reported for shelf and slope cumacean assemblages from various geographical areas. Smax/Dmax, maximum value of species richness/abundance recorded at a sampling station in the study area. St, total species richness recorded in the whole study area. H’, maximum value of the Shannon-Wiener diversity index recorded at a sampling station of the study area. –, no data; a unpublished data; b calculated from rough data mentioned in reference; c, d daytime, night-time samplings; e recalculted from original data in ind./100 m3 (conversion factor: 0.515 10–2).

Bathymetrical and geographical areas Sampling gear Depth range Smax St Dmax H’ References
(m) (ind. m–2) (log2)
Shelf areas
Hendaye beach (NE Atlantic) sledge 0-0.2 - 5 - - San Vicente and Sorbe 2001San Vicente C., Sorbe J.-C. 2001. Temporal changes in the structure of the suprabenthic community from Hendaya beach (southern Bay of Biscay): A comparison with a northwestern Mediterranean beach community. Bol. Inst. Esp. Oceanogr. 17: 107-120.
Creixell beach (NW Mediterranean) sledge 0.5-3.5 - 6 - - San Vicente and Sorbe 1999 San Vicente C., Sorbe J.-C. 1999. Spatio-temporal structure of the suprabenthic community from Creixell beach (western Mediterranean). Acta Oecol. 20: 377-389.
Galician ria (NE Atlantic) grab 0-28.2 4 4 153.6 - Cacabelos et al. 2010Cacabelos E., Lourido A., Troncoso J.S. 2010 Composition and distribution of subtidal and intertidal crustacean assemblages in soft-bottoms of the Ría de Vigo (NW Spain). Sci. Mar. 74: 455-464.
Catalan Sea (NW Mediterranean) grab 15 10 1 333.0 - Corbera et al. 2013Corbera J., Martin D., Pinedo S., et al. 2013. Cumacean density, biomass and productivity in the sandy bottoms of the Bay of Blanes (western Mediterranean). Cah. Biol. Mar. 54: 63-70.
Persian Gulf grab 15-30 4a 8 260.0a 1.24a Martin et al. 2010Martin D., Fernandez-Arcaya U., Tirado P., et al. 2010. Relationships between shallow-water cumacean assemblages and sediment characteristics facing the Iranian coast of the Persian Gulf. J. Mar. Biol. Ass. U.K. 90: 125-134.
Levantine Sea (E Mediterranean) grab 1.9-63 8 18 24000.0 2.04 Corbera and Galil 2016Corbera J., Galil B.S. 2016. Cumacean assemblages on the Levantine shelf (Mediterranean Sea) - spatiotemporal trends between 2005 and 2012. Mar. Biol. Res. 12: 663-672.
Catalan Sea (NW Mediterranean) grab 5-70 8 22 612.0 2.58b Corbera and Cardell 1995Corbera J., Cardell M.J. 1995. Cumaceans as indicators of eutrophication on soft bottoms. Sci. Mar. 59: 63-69.
Aquitanian shelf (NE Atlantic) sledge 31c 5 7 2.4e 1.69 Sorbe 1984Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1.
« « 91c 9 14 3.2e 2.46 «
« « 91d 10 14 6.5e 2.49 «
« « 126c 12 15 1.2e 3.21 «
« « 179c 15 17 4.3e 2.93 «
Slope areas
Cap Ferret slope (NE Atlantic) sledge 386-420 7 9 0.3 - Sorbe and Elizalde 2014Sorbe J.C, Elizalde M. 2014. Temporal changes in the structure of a slope suprabenthic community from the Bay of Biscay (NE Atlantic Ocean). Deep-Sea Res. II 106: 179-191.
Capbreton Canyon (NE Atlantic) sledge 151-797 12 25 3.0 - Frutos and Sorbe 2017Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46.
Kostarrenkala (NE Atlantic) sledge 175-1000 24 38 5.4 - Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309.
Cap Ferret slope (NE Atlantic) sledge 346-1099 25 42 0.6 4.05 this study
Catalan Sea (NW Mediterranean) sledge 389-1859 19 32 2.5 3.41b Cartes and Sorbe 1997Cartes J.E., Sorbe J.-C. 1997. Bathyal cumaceans of the Catalan Sea (North-western Mediterranean): faunistic composition, diversity and near-bottom distribution along the slope (between 389 and 1859 m). J. Nat. Hist. 31: 1041-1054.
Cap Ferret Canyon (NE Atlantic) sledge 2410-2425 - - 1.7 - Sorbe 1999Sorbe J.C. 1999. Deep-sea macrofaunal assemblages within the Benthic Boundary Layer of the Cap-Ferret Canyon (Bay of Biscay, NE Atlantic). Deep-Sea Res. II 46: 2309-2329.
Cap Ferret Canyon (NE Atlantic) sledge 3058-3070 - - 0.3 - «

According to the structural data presented in Table 7, species richness (maximum values) is generally higher in slope assemblages (range: 7-25 species per station) than in shelf ones (range: 4-15 species per station). Such a trend is also verified when considering the St mean values for slope (29.2±13.0 species per station; mean±SD) and shelf (10.9±6.6 species per station) assemblages of the studied areas (tobs=3.733; d.f.=15; p<0.001). Furthermore, within the slope assemblages studied herein, the cumulative species richness increases with depth: 13, 22 and 35 species for assemblages Ia, Ib and II, respectively. Although without statistical significance, the diversity values, H’, are also higher in slope assemblages (range: 3.41-4.05) than in the shelf ones (range: 1.24-3.21), corroborating previous observations on bathyal cumacean assemblages (Jones and Sanders 1972Jones N.S., Sanders H.L. 1972. Distribution of Cumacea in the deep Atlantic. Deep-Sea Res. 19: 737-745., Reyss 1973Reyss D. 1973. Distribution of Cumacea in the deep Mediterranean. Deep-Sea Res. 20: 1119-1123.) as well as on all bathyal suprabenthic assemblages (Frutos and Sorbe 2014Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309., 2017Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46., Sorbe and Elizalde 2014Sorbe J.C, Elizalde M. 2014. Temporal changes in the structure of a slope suprabenthic community from the Bay of Biscay (NE Atlantic Ocean). Deep-Sea Res. II 106: 179-191.).

According to our multivariate analysis (see Fig. 3), two main faunal changes occur in the cumacean fauna collected on the upper bathyal of the southern Bay of Biscay. The first one is observed between 485 and 522 m, and the second one (more clearly marked) between 714 and 790 m. In the upper part of the study area, the substratum consists of muddy fine sands (ca. 400 m depth, median grain size [Mz]=73.9 µm; particles <63 µm [pelites]=38.2%; organic carbon content [Corg]=0.37% of sediment dry weight; see Etcheber et al 1999Etcheber H., Relexans J.-C., Beliard M., et al. 1999. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res. II 46: 2249-2288. and Elizalde 1994Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.). The edge of the adjacent shelf is characterized by comparable bottoms (ca. 179 m depth: Mz=100.0 µm; pelites=20.0%; see Sorbe 1984Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1.). This similarity in the texture of surficial sediments favours the extension of some shelf species down to the upper bathyal (for instance the Bodotriidae Iphinoe serrata and the Nannastacidae Nannastacus atlanticus). Separating the cumacean assemblages Ia and Ib, the upper ecotone at about 500 m depth is related to the apparition of muddy sediments (characterized by a pelitic fraction ≥50%; see Elizalde 1994Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.) that are more fluid than the shallower sandy bottoms. This structural change on the sedimentary coverage has a probable effect on the functioning of the suprabenthic sledge. Primarily designed to slide on compact sandy bottoms thanks to its lateral skates (see Dauvin et al. 1995Dauvin J.-C., Sorbe J.-C, Lorgeré J.-C 1995. Benthic Boundary Layer macrofauna from the upper continental slope and the Cap Ferret canyon (Bay of Biscay). Oceanol. Acta 18: 113-122.), this device probably skims the uppermost sediment layer on fluid muddy bottoms and thus samples surficial infaunal components in addition to the suprabenthic ones. This phenomenon is attested by a significant increase in cumacean mean abundances below 500 m depths: 42.7±10.6 ind./100 m2 (mean±SD) versus 5.6±3.4 ind./100 m2 at shallower depths (tobs=48.4; d.f.=11; p<0.001). It should be noted that no Leuconidae were observed within the assemblage Ia (346-485 m), although Leucon (Macrauloleucon) siphonatus curiously showed a disjoint bathymetric distribution, being present on both muddy sand bottoms of the outer shelf (91-179 m; Sorbe 1984Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1.) and deeper muddy slope bottoms (608-1099 m; this study).

These new observations corroborate the eurybathic (100-4380 m; Fage 1951Fage L. 1951. Cumacés. Faune de France. P. Lechevalier.) and eurytopic distribution of this strange cumacean with an unusually long branchial siphon (longer than the carapace in some adults; Fage 1951Fage L. 1951. Cumacés. Faune de France. P. Lechevalier.). This morphological peculiarity is probably an adaptive character allowing this species to colonize very diverse benthic habitats. The lower ecotone is imprecisely located between 714 and 791 m depth (due to absence of detailed data for the cumacean fauna of haul TS09). It constitutes the upper limit of the cumacean assemblage II installed on muddy bottoms characterized by a higher organic carbon content of surficial sediments (Corg from 0.84% at 720 m to 1.36% at 995 m) and a pelitic fraction ≥84% (see Etcheber et al. 1999Etcheber H., Relexans J.-C., Beliard M., et al. 1999. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res. II 46: 2249-2288.). At ca. 1099 m (the lower limit of the present study area), the surficial sediments show the following features: Mz=12.3 µm; pelites=92.6%, mainly constituted by particles <15 µm (clay=58.0%); Corg=1.30% (see Elizalde 1994Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.). This assemblage probably extends on deeper bathyal bottoms because it is composed of many bathyal/abyssal species (not found at shallower depths in the present study), such as Bathycuma brevirostre (350-1700 m), Cyclaspis longicaudata (189-3350 m) and Cyclaspoides sarsi (698-1099 m); Makrokylindrus (Adiastylis) anomalus (950-1550 m), M. (A.) longicaudatus (650-1287 m) and M. (A.) longipes (15-1227 m); Hemilamprops normani (220-3000 m) and Platytyphlops orbicularis (423-1739 m); Leucon (Crymoleucon) tener (790-1445 m), Leucon (Epileucon) ensis (790-2006 m) and L. (E.) pusillus (610-1780 m); and Campylaspis rostrata (220-2338 m), Cumella (Cumella) divisa (610-2864 m), Procampylaspis omnidion (860-4749 m) and Schizocuma spinoculatum (1097-2900 m) (distributional data according to Sars 1899Sars G.O. 1899. An account of the Crustacea of Norway. Vol. III: Cumacea. Part I & II: Cumidae, Lampropidae (part.). Bergen Museum, Christiania 115 pp., Hansen 1920Hansen H.J. 1920. Crustacea Malacostraca IV. Danish Ingolf Exp., Copenhagen, vol. 3, 86 pp., Fage 1951Fage L. 1951. Cumacés. Faune de France. P. Lechevalier., Bishop 1981bBishop J.D.D. 1981b. A revised definition of the genus Epileucon Jones (Crustacea, Cumacea), with descriptions of species from the deep Atlantic. Philos. Trans. R. Soc. Lond. B 291: 353-409., Jones 1984Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 46: 207-289., Gerken 2018Gerken S. 2018. The Lampropidae (Crustacea: Cumacea) of the World. Zootaxa 4428: 1-192.).

In addition to these surficial sedimentary characters that certainly play a major role in the bathymetric distribution and local abundance of cumaceans, the bathyal bottoms investigated during the present study are impacted by the benthic impingement of two superimposed water bodies: the Eastern North Atlantic Water between 200 and 600 m and Mediterranean Overflow Water between 700 and 1300 m (Durieu de Madron et al. 1999Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.). Inferred from CTD profiles carried out in the water column inside the Cap Ferret Canyon (Durieu de Madron et al. 1999Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.) as well as on its southern margin (unpublished data collected during various oceanographic cruises in all seasons except winter), hydrographic conditions in the near-bottom bathyal environment can be supposedly described as follows in order to assess their possible role in the distribution and structuration of the cumacean assemblages detected across the upper slope. Assemblage Ia (346-485 m) is bathed by the Eastern North Atlantic Water, corresponding to near-bottom waters with a salinity range of 35.52 to 5.74, a temperature range of 10.5 to 11.3°C and an oxygen concentration range of 4.16 to 4.48 ml L–1. Assemblage Ib (522-754 m) is also bathed by the same water body, corresponding to near-bottom waters with a salinity range of 35.54 to 35.85, a temperature range of 10.1 to 10.7°C and an oxygen concentration range of 3.76 to 4.16 ml L–1. Assemblage II (790-1099 m) is under the influence of the Mediterranean Overflow Water, corresponding to near-bottom waters with a salinity range of 35.69 to 35.77, a temperature range of 9.1 to 10.1°C and an oxygen concentration range of 3.65 to 3.69 ml L–1. Whatever the bathymetric level in the upper bathyal, near-bottom temperatures show weak fluctuations during the annual cycle (≤1°C; inferred from seasonal CTD profiles). This environmental variable is probably not the triggering factor of reproductive mechanisms in these cumaceans, as is the case with some peracarid and decapod populations from adjacent shelf waters (Sorbe 1984Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1., San Vicente and Sorbe 2013San Vicente C., Sorbe J.-C. 2013. Comparative life-histories, population dynamics and productivity of Schistomysis populations (Crustacea, Mysida) in European shelf environments. J. Sea Res. 81: 13-32.). Furthermore, even in the case of the Mediterranean waters (minimum O2 concentration: 3.60 ml L–1), the near-bottom waters are far from dysoxia as defined by Levin (2003)Levin L.A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41: 1-45. for oceanic waters (≤1.0 ml L–1), with O2 saturation values ≥57.24%. As pointed out by Diaz and Rosenberg (1995)Diaz R.J., Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33: 245-303., the actual O2 values are probably lower at the water-sediment interface, but the alongslope bottom currents known to periodically occur in the study area (Sorbe and Weber 1995Sorbe J.C., Weber O. 1995. Influence de la profondeur et des sédiments superficiels sur la structure des communautés suprabenthiques bathyales sud-Gascogne. Actas del IV Coloquio Internacional sobre Oceanografía del Golfo de Vizcaya, pp. 183-194., Durieu de Madron et al. 1999Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.) promote the renewal of their near-bottom waters and probably prevent the occurrence of dysoxic bottom events. Finally, it should be noted that the actual impact of these hydrographic variables on the biology and behaviour of benthic peracaridans is far from being well understood.

Although little is known about the diet of cumaceans (see Jones 1976Jones, N.S. 1976. British cumaceans. Synopses of the British Fauna, 7. Academic Press., Băcescu and Petrescu 1999Băcescu M., Petrescu I. 1999. Ordre des Cumacés (Cumacea Krøyer, 1846). In: Forest, J. et al. Traité de zoologie: anatomie, systématique, biologie: VII. Crustacés: III A. Péracarides. Mém. Inst. Océanogr. (Monaco) 19: 391-428., Błażewicz-Paszkowycz and Ligowski 2002Błażewicz-Paszkowycz M., Ligowski R. 2002. Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct. Sci. 14: 11-15.), the distribution of some species could be related to food availability in the bottom environment. The nannastacid species belonging to genera Campylaspis and Procampylaspis are thought to be predators on foraminifers and small crustaceans, based on the structure of their mouthparts modified as piercing organs and on the analysis of their gut contents (Jones 1976Jones, N.S. 1976. British cumaceans. Synopses of the British Fauna, 7. Academic Press., Błażewicz-Paszkowycz and Ligowski 2002Błażewicz-Paszkowycz M., Ligowski R. 2002. Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct. Sci. 14: 11-15.). In the southern Bay of Biscay, the noteworthy numerical dominance of Campylaspis species between 425 and 714 m (see Table S1) is concomitant with the abundance of some benthic agglutinated foraminifers at the same bathymetric level, as reported by Elizalde et al. (1999)Elizalde M., Weber O., Pascual A., et al. 1999. Benthic response of Munnopsurus atlanticus (Crustacea, Isopoda) to the carbon content of the near-bottom sedimentary environment on the southern margin of the Cap-Ferret Canyon (Bay of Biscay, northeastern Atlantic Ocean). Deep-Sea Res. II 46: 2331-2344.. Elizalde et al. (1999)Elizalde M., Weber O., Pascual A., et al. 1999. Benthic response of Munnopsurus atlanticus (Crustacea, Isopoda) to the carbon content of the near-bottom sedimentary environment on the southern margin of the Cap-Ferret Canyon (Bay of Biscay, northeastern Atlantic Ocean). Deep-Sea Res. II 46: 2331-2344. showed that the agglutinated foraminifer Pseudoclavulina mexicana (Cushman, 1922) is preyed upon by the isopod Munnopsurus atlanticus (Bonnier, 1896), crushed by the robust mandibles of this species. Such a trophic link with benthic agglutinated foraminifers remains to be demonstrated in the case of the nannastacid species from the southern Bay of Biscay. The other cumaceans taxa herein mentioned are generally classified as detritivores (see Błażewicz-Paszkowycz and Ligowski 2002Błażewicz-Paszkowycz M., Ligowski R. 2002. Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct. Sci. 14: 11-15. for Antarctic species). The development of their bathyal populations is dependent on periodical inputs of nutritive particles originating from the euphotic zone (overlying pelagial waters and/or adjacent shelf areas).

The present results on the bathyal cumacean fauna can be compared with previous published analyses carried out on the other peracarids from the same collection data (346-1099 m), such as the Mysidacea (Elizalde et al. 1991Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144.; obsolete denomination, grouping current orders Lophogastrida and Mysida) and the Amphipoda (Dauvin and Sorbe 1995Dauvin J.-C., Sorbe J.-C. 1995. Suprabenthic amphipods from the southern margin of the Cap-Ferret canyon (Bay of Biscay, Northeastern Atlantic Ocean): abundance and bathymetric distribution. Pol. Arch. Hydrobiol. 42: 441-460.). In each of these bathyal taxocœnoses, three assemblages have been detected related to depth (assemblages A, B and C for convenience of presentation). The ecotone separating the uppermost assemblages A and B is located around 500 m depth for the three taxocœnoses. As demonstrated herein for cumaceans, these faunal changes are mainly related to a modification of the sedimentary cover (correlated to peculiar hydrodynamic conditions at the shelf break/upper slope), from muddy sands in the upper levels to muddy bottoms below 500 m depth. The upper assemblages A are partly composed of shelf species extending their bathymetric distribution to the muddy sand bottoms of the upper slope (for instance, the amphipods Amphilochoides boecki G.O. Sars, 1892, Rhachotropis integricauda Carausu, 1948, Iphimedia obesa Rathke, 1843, Hippomedon denticulatus (Spence Bate, 1857), Westwoodilla caecula (Spence Bate, 1857), Apherusa bispinosa (Spence Bate, 1857) and A. ovalipes Norman and Scott, 1906; and the mysids Leptomysis gracilis (G.O. Sars, 1864) and Mysideis parva Zimmer, 1915). The bathymetric location of the lower ecotone separating assemblages B and C is variable according to taxocœnoses, probably reflecting different sensibility of taxa /species to near-bottom environmental changes. For cumaceans and amphipods, this ecotone is located between 714 and 754 m (Dauvin and Sorbe 1995Dauvin J.-C., Sorbe J.-C. 1995. Suprabenthic amphipods from the southern margin of the Cap-Ferret canyon (Bay of Biscay, Northeastern Atlantic Ocean): abundance and bathymetric distribution. Pol. Arch. Hydrobiol. 42: 441-460.; this study), suggesting that some amphipods are also affected by the increase in organic carbon in muddy surficial sediments, as mentioned above for cumaceans. For mysids, this lower ecotone is significantly located deeper on the slope (between 924 and 1024 m), probably related to the oxygen minimum zone (OMZ; O2 concentration minimum =3.6 ml L–1) detected between 908 and 942 m on CTD profiles carried out in the study area (see Durieu de Madron et al. 1999Durrieu de Madron X., Castaing P., Nyffeler F., et al. 1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.). According to available distributional data (Nouvel and Lagardère 1976Nouvel H., Lagardère J.-P. 1976. Les mysidacés du talus continental du golfe de Gascogne. I. Tribu des Erythropini (genre Erythrops excepté). Bull. Mus. natn. Hist. nat, Paris, 3e série, n°414, Zoologie 291: 1243-1324., Lagardère and Nouvel 1980Lagardère J.-P., Nouvel H. 1980. Les mysidacés du talus continental du golfe de Gascogne. II. FamilIes des Lophogastridae, Eucopiidae et Mysidae (Tribu des Erythropini exceptée). Bull. Mus. Natn. Hist. Nat, Paris, 4e série, 2, section A, 2: 375-412., Elizalde et al. 1991Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144.), this OMZ actually constitutes the lower bathymetric limit of some upper bathyal mysids such as Amblyops spiniferus Nouvel and Lagardère, 1976, Pseudomma kruppi W. Tattersall, 1909 and Mysidella biscayensis Lagardère and Nouvel, 1980, as well as the upper limit of the deeper bathyal mysid Dactylamblyops thaumatops W. Tattersall, 1907 (the numerically dominant species of the deep mysid assemblage). Surprisingly, this OMZ has apparently no impact on the depth distribution of cumacean assemblages but a slight effect on amphipod assemblages, as suggested by the correspondence analysis of data (see Dauvin and Sorbe 1995Dauvin J.-C., Sorbe J.-C. 1995. Suprabenthic amphipods from the southern margin of the Cap-Ferret canyon (Bay of Biscay, Northeastern Atlantic Ocean): abundance and bathymetric distribution. Pol. Arch. Hydrobiol. 42: 441-460.). Vaquer-Sunyer and Duarte (2008)Vaquer-Sunyer R., Duarte C.M. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U.S.A. 105: 15452-15457. showed that hypoxia thresholds vary greatly across marine benthic organisms, crustaceans being the most sensitive, but without detailed information on peracarids. Due to their known higher swimming activity (see Mauchline 1980Mauchline J. 1980. The biology of mysids and euphausiids. Adv. Mar. Biol. 18, 681 pp., Elizalde et al. 1991Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144.), mysids probably have higher oxygen requirements than most amphipods and cumaceans.

CONCLUSIONSTop

In the upper bathyal of the SE Bay of Biscay, cumaceans constitute an important fraction of the suprabenthic fauna, although they are characterized by a lower diversity and abundance than amphipods (a major group in many near-bottom deep assemblages, as pointed out by Frutos et al. 2017Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46.). Within the study area, a minimum of 42 cumacean species were censed (some of them putatively new to science), belonging to 5 families (mainly Nannastacidae and Diastylidae). As for other major taxocœnoses, three across-slope cumacean assemblages were detected, mainly structured by depth and surficial sediments (granulometric composition and organic content). This study is a contribution to a better knowledge of the small near-bottom peracarid fauna of the NE Atlantic slope (a major food resource for demersal fishes; see Sorbe 1981Sorbe J.C. 1981. Rôle du benthos dans le régime alimentaire des poissons démersaux du secteur sud-Gascogne. Kieler Meeresforsch., Sonderh. 5: 479-489.), a deep marine area increasingly impacted by many anthropogenic activities (Levin and Dayton 2009Levin L.A., Dayton P.K. 2009. Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol. 24: 606-617.).

ACKNOWLEDGEMENTSTop

The authors thank the crews of the RV Côte d’Aquitaine (CNRS) and RV Le Noroit (IFREMER), as well as all participants of the oceanographic surveys for their assistance at sea. They wish to express their gratitude to M. Elizalde, J.C. Dauvin and J.C. Lorgeré for their valuable help during sorting of organisms, to J.M. Jouanneau and O. Weber for the communication of hydrological and sedimentological data and also to J.A. Cuesta, I. Frutos and an anonymous reviewer for his comments that improved our manuscript. This study was partially supported by CNRS-CIRMAT (oceanographic cruises and loan of the Roscoff suprabenthic sledge).

Just after finishing the redaction of the last draft of this manuscript, Jean Claude Sorbe, one of the authors, passed away. Thus, this is one of his last contributions to science, to which he dedicated an important part of his life. Those of us who work with him know his tireless passion for work and his rigour, and we acknowledge all his teachings, but above all we appreciate his friendship. He was a great man, and we will not forget him.

REFERENCESTop

Băcescu M. 1992. Cumacea II: (Fam. Nannastacidae, Diastylidae, Pseudocumatidae, Gynodiastylidae et Ceratocumatidae). Crustaceorum Catalogus, Pars 8. SPB Academic Publishing, The Hague, pp. 175-468.

Băcescu M., Petrescu I. 1999. Ordre des Cumacés (Cumacea Krøyer, 1846). In: Forest, J. et al. Traité de zoologie: anatomie, systématique, biologie: VII. Crustacés: III A. Péracarides. Mém. Inst. Océanogr. (Monaco) 19: 391-428.

Bishop J.D.D. 1981a. Two new leuconids (Peracarida, Cumacea) of widespread occurrence in the deep Atlantic. Crustaceana 40: 144-159.
https://doi.org/10.1163/156854081X00552

Bishop J.D.D. 1981b. A revised definition of the genus Epileucon Jones (Crustacea, Cumacea), with descriptions of species from the deep Atlantic. Philos. Trans. R. Soc. Lond. B 291: 353-409.
https://doi.org/10.1098/rstb.1981.0003

Błażewicz-Paszkowycz M., Ligowski R. 2002. Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct. Sci. 14: 11-15.
https://doi.org/10.1017/S0954102002000524

Bonnier J.J. 1896. Édriophthalmes. Résultats Scientifiques de la Campagne du «Caudan» dans le Golfe de Gascogne, août-septembre 1895. Ann. Univ. Lyon 26: 528-562.

Brunel P. 1972. The Gaspe cod ecosystem in the Gulf of St. Lawrence. III. The daily and seasonal vertical migrations of cod (Gadus morhua) in 1960-62. Nat. Can. 99: 287-357.

Cacabelos E., Lourido A., Troncoso J.S. 2010 Composition and distribution of subtidal and intertidal crustacean assemblages in soft-bottoms of the Ría de Vigo (NW Spain). Sci. Mar. 74: 455-464.
https://doi.org/10.3989/scimar.2010.74n3455

Cartes J.E., Sorbe J.-C. 1997. Bathyal cumaceans of the Catalan Sea (North-western Mediterranean): faunistic composition, diversity and near-bottom distribution along the slope (between 389 and 1859 m). J. Nat. Hist. 31: 1041-1054.
https://doi.org/10.1080/00222939700770541

Clark K.R., Gorley R.N. 2001. Primer v5: User Manual/Tutorial. Plymouth Marine Laboratory.

Corbera J. 2012. Rare and new cumaceans (Crustacea, Peracarida) from the southern margin of the Cap Ferret Canyon (Bay of Biscay). ZooKeys 235: 73-85.
https://doi.org/10.3897/zookeys.235.4027

Corbera J., Cardell M.J. 1995. Cumaceans as indicators of eutrophication on soft bottoms. Sci. Mar. 59: 63-69.

Corbera J., Galil B.S. 2016. Cumacean assemblages on the Levantine shelf (Mediterranean Sea) - spatiotemporal trends between 2005 and 2012. Mar. Biol. Res. 12: 663-672.
https://doi.org/10.1080/17451000.2016.1169297

Corbera J., Sorbe J.C. 1999. The problematic cumacean Schizotrema atlanticum from the eastern Atlantic: redescription and ecological notes. J. Crustac. Biol. 19: 123-130.
https://doi.org/10.1163/193724099X00321

Corbera J., Martin D., Pinedo S., et al. 2013. Cumacean density, biomass and productivity in the sandy bottoms of the Bay of Blanes (western Mediterranean). Cah. Biol. Mar. 54: 63-70.

Dagnelie P. 1975. Théorie et méthodes statistiques. Volume II: les méthodes de l’inférence statistique. Les Presses Agronomiques de Gembloux, 463 pp.

Dauvin J.-C., Sorbe J.-C. 1995. Suprabenthic amphipods from the southern margin of the Cap-Ferret canyon (Bay of Biscay, Northeastern Atlantic Ocean): abundance and bathymetric distribution. Pol. Arch. Hydrobiol. 42: 441-460.

Dauvin J.-C., Sorbe J.-C, Lorgeré J.-C 1995. Benthic Boundary Layer macrofauna from the upper continental slope and the Cap Ferret canyon (Bay of Biscay). Oceanol. Acta 18: 113-122.

Diaz R.J., Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33: 245-303.

Dixon A. 1944. Notes on certain aspects of the biology of Cumopsis goodsiri (Van Beneden) and some other cumaceans in relation to their environment. J. Mar. Biol. Ass. U.K. 26: 61-71.
https://doi.org/10.1017/S0025315400014454

Durrieu de Madron X., Castaing P., Nyffeler F., et al.1999. Slope transport of suspended particulate matter on the Aquitanian margin of the Bay of Biscay. Deep-Sea Res. II 46: 2003-2027.
https://doi.org/10.1016/S0967-0645(99)00053-3

Elizalde M. 1994. Les communautés suprabenthiques bathyales de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne). PhD thesis, Université de Bordeaux 1, 212 pp.

Elizalde M., Dauvin J.-C, Sorbe J.-C. 1991. Les mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. Paris 67: 129-144.

Elizalde M., Sorbe J.-C, Dauvin J.-C 1993a. Las comunidades suprabentónicas batiales del golfo de Vizcaya (margen sur del cañón de Cap-Ferret): composición faunística y estructura. Publ. Espec. Inst. Esp. Oceanogr. 11: 247-258.

Elizalde M., Weber O., Sorbe J.-C. 1993b. Influence des caractères sédimentologiques sur la distribution des crustacés benthiques de la pente atlantique (Golfe de Gascogne; marge sud du canyon du Cap-Ferret). Actes du IIIe Colloque international «Océanographie du Golfe de Gascogne», pp. 269-273.

Elizalde M., Weber O., Pascual A., et al. 1999. Benthic response of Munnopsurus atlanticus (Crustacea, Isopoda) to the carbon content of the near-bottom sedimentary environment on the southern margin of the Cap-Ferret Canyon (Bay of Biscay, northeastern Atlantic Ocean). Deep-Sea Res. II 46: 2331-2344.
https://doi.org/10.1016/S0967-0645(99)00065-X

Etcheber H., Relexans J.-C., Beliard M., et al. 1999. Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res. II 46: 2249-2288.
https://doi.org/10.1016/S0967-0645(99)00062-4

Fage L. 1929. Cumacés et Leptostracés provenant des campagnes du Prince Albert 1er de Monaco. Résult. Camp. Sci. Albert 1er Prince Monaco 77: 3-51.

Fage L. 1951. Cumacés. Faune de France. P. Lechevalier.

Forsman B. 1938. Untersuchungen über die Cumaceen des Skagerraks. Zool. Bid. Uppsala 18: 1-161.

Foxon G. 1936. Notes on the natural history of certain sand-dwelling Cumacea. Ann. Mag. Nat. Hist. 17: 377-393.
https://doi.org/10.1080/00222933608655133

Frutos I., Sorbe J.C. 2014. Bathyal suprabenthic assemblages from the southern margin of the Capbreton Canyon (“Kostarrenkala” area), SE Bay of Biscay. Deep-Sea Res. II 104: 291-309.
https://doi.org/10.1016/j.dsr2.2013.09.010

Frutos I., Sorbe J.C. 2017. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep-Sea Res. Part I 130: 36-46.
https://doi.org/10.1016/j.dsr.2017.10.007

Frutos I., Brandt A., Sorbe J.C. 2017. Deep-sea suprabenthic communities: the forgotten biodiversity. In: Rossi S., Bramanti L., et al. (eds), Marine Animal Forests: The ecology of benthic biodiversity hotspots. Springer, Cham. pp. 475-503.
https://doi.org/10.1007/978-3-319-21012-4_21

Gage J., Tyler P. 1992. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press.
https://doi.org/10.1017/CBO9781139163637

Gerken S. 2018. The Lampropidae (Crustacea: Cumacea) of the World. Zootaxa 4428: 1-192.
https://doi.org/10.11646/zootaxa.3630.1.1

Hansen H.J. 1920. Crustacea Malacostraca IV. Danish Ingolf Exp., Copenhagen, vol. 3, 86 pp.

Hawkinson C.A. 1992. Feeding ecology of gray whales in Agate Bay, California, Summers 1990 and 1991. Master’s thesis, San José State University, 45 pp.

Jones N.S. 1969. The systematics and distribution of Cumacea from deeps exceeding 200 meters. Galathea Rep. 10: 99-180.

Jones N.S. 1974. Campylaspis species (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 27: 247-300.
https://doi.org/10.5962/bhl.part.22978

Jones, N.S. 1976. British cumaceans. Synopses of the British Fauna, 7. Academic Press.

Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Br. Mus. (Nat. Hist.) Zool. 46: 207-289.
https://doi.org/10.5962/bhl.part.15965

Jones N.S. 1985. Distribution of the Cumacea. In: Laubier L., Monniot C. (eds), Peuplements profonds du golfe de Gascogne: campagnes BIOGAS. IFREMER, Brest, pp 429-433.

Jones N.S., Sanders H.L. 1972. Distribution of Cumacea in the deep Atlantic. Deep-Sea Res. 19: 737-745.
https://doi.org/10.1016/0011-7471(72)90066-6

Lagardère J.-P. 1977. Recherches sur la distribution verticale et sur l’alimentation des crustacés décapodes benthiques de la pente continentale du golfe de Gascogne. Analyse des groupements carcinologiques. Bull. Cent. Etud. Rech. Sci. Biarritz 2: 367-440.

Lagardère J.-P., Nouvel H. 1980. Les mysidacés du talus continental du golfe de Gascogne. II. FamilIes des Lophogastridae, Eucopiidae et Mysidae (Tribu des Erythropini exceptée). Bull. Mus. Natn. Hist. Nat, Paris, 4e série, 2, section A, 2: 375-412.

Levin L.A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41: 1-45.

Levin L.A., Dayton P.K. 2009. Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol. 24: 606-617.
https://doi.org/10.1016/j.tree.2009.04.012

Martin D., Fernandez-Arcaya U., Tirado P., et al. 2010. Relationships between shallow-water cumacean assemblages and sediment characteristics facing the Iranian coast of the Persian Gulf. J. Mar. Biol. Ass. U.K. 90: 125-134.
https://doi.org/10.1017/S0025315409990695

Mauchline J. 1980. The biology of mysids and euphausiids. Adv. Mar. Biol. 18, 681 pp.

Mees J., Jones M.B. 1997. The hyperbenthos. Oceanogr. Mar. Biol. Annu. Rev. 35: 221-255.

Nouvel H., Lagardère J.-P. 1976. Les mysidacés du talus continental du golfe de Gascogne. I. Tribu des Erythropini (genre Erythrops excepté). Bull. Mus. natn. Hist. nat, Paris, 3e série, n°414, Zoologie 291: 1243-1324.

Rex M., Etter R. 2010. Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge and London.

Rex M., Etter R., Stuart C. 1997. Large-scale patterns of species diversity in the deep-sea benthos. In: Ormond R.F.G., Gage J.D., Angel M.V. (eds) Marine biodiversity: patterns and processes, Cambridge University Press, pp 94-121.
https://doi.org/10.1017/CBO9780511752360.006

Reyss D. 1973. Distribution of Cumacea in the deep Mediterranean. Deep-Sea Res. 20: 1119-1123.
https://doi.org/10.1016/0011-7471(73)90025-9

Reyss D. 1974a. Contribution à l’étude des cumacés de profondeur de l’Atlantique nord: le genre Makrokylindrus Stebbing. Crustaceana 26: 5-28.
https://doi.org/10.1163/156854074X00028

Reyss D. 1974b. Contribution à l’étude des cumacés de profondeur en Atlantique: le genre Diastyloides Sars, 1900. Crustaceana 27: 285-293.
https://doi.org/10.1163/156854074X00811

Reyss D. 1978. Cumacés de profondeur de l’Atlantique nord. Famille des Lampropidae. Crustaceana 35: 1-21.
https://doi.org/10.1163/156854078X00150

Sainte-Marie B., Brunel P. 1985. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. Mar. Ecol. Prog. Ser. 23: 57-69.
https://doi.org/10.3354/meps023057

San Vicente C., Sorbe J.-C. 1999. Spatio-temporal structure of the suprabenthic community from Creixell beach (western Mediterranean). Acta Oecol. 20: 377-389.
https://doi.org/10.1016/S1146-609X(99)00129-0

San Vicente C., Sorbe J.-C. 2001. Temporal changes in the structure of the suprabenthic community from Hendaya beach (southern Bay of Biscay): A comparison with a northwestern Mediterranean beach community. Bol. Inst. Esp. Oceanogr. 17: 107-120.

San Vicente C., Sorbe J.-C. 2013. Comparative life-histories, population dynamics and productivity of Schistomysis populations (Crustacea, Mysida) in European shelf environments. J. Sea Res. 81: 13-32.
https://doi.org/10.1016/j.seares.2013.03.009

Sars G.O. 1899. An account of the Crustacea of Norway. Vol. III: Cumacea. Part I & II: Cumidae, Lampropidae (part.). Bergen Museum, Christiania 115 pp.

Shalla S.H., Bishop J.D.D. 2007. Lampropidae (Crustacea: Cumacea) from the deep north-east Atlantic and the North Sea, with two new species of Hemilamprops and Mesolamprops. J. Mar. Biol. Ass. U.K. 87: 1191-1200.
https://doi.org/10.1017/S0025315407055063

Sorbe J.C. 1981. Rôle du benthos dans le régime alimentaire des poissons démersaux du secteur sud-Gascogne. Kieler Meeresforsch., Sonderh. 5: 479-489.

Sorbe J.C. 1984. Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. Thèse d’Etat, Université de Bordeaux 1.

Sorbe J.C. 1999. Deep-sea macrofaunal assemblages within the Benthic Boundary Layer of the Cap-Ferret Canyon (Bay of Biscay, NE Atlantic). Deep-Sea Res. II 46: 2309-2329.
https://doi.org/10.1016/S0967-0645(99)00064-8

Sorbe J.C, Elizalde M. 2014. Temporal changes in the structure of a slope suprabenthic community from the Bay of Biscay (NE Atlantic Ocean). Deep-Sea Res. II 106: 179-191.
https://doi.org/10.1016/j.dsr2.2013.09.041

Sorbe J.C., Weber O. 1995. Influence de la profondeur et des sédiments superficiels sur la structure des communautés suprabenthiques bathyales sud-Gascogne. Actas del IV Coloquio Internacional sobre Oceanografía del Golfo de Vizcaya, pp. 183-194.

Stanley D.J., Addy S.K., Behrens E.W. 1983. The mudline: variability of its position relative to shelfbreak. In: Stanley D.J., Moore G.T., et al. (eds). The Shelfbreak: Critical Interface on Continental Margins, Special Publications of SEPM.
https://doi.org/10.2110/pec.83.06.0279

Vaquer-Sunyer R., Duarte C.M. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U.S.A. 105: 15452-15457.
https://doi.org/10.1073/pnas.0803833105

Watling L., Gerken S. 2019. World Cumacea Database. World Register of Marine Species. Cumacea. Accessed on 2019-02-03 through:
http://www.marinespecies.org/aphia.php?p=taxdetails&id=1137

SUPPLEMENTARY MATERIAL

The following supplementary material is available through the online version of this article and at the following link: http://scimar.icm.csic.es/scimar/supplm/sm050314esm.pdf

Table S1. – Vertical distribution of cu macean individuals in the near-bottom water layers (N1, 10-40 cm; N2, 45-75 cm; N3, 80-110 cm; N4, 115-145 cm above the seafloor) sampled by a suprabenthic sledge at 13 stations on the southern margin of the Cap Ferret Canyon. TS09 samples only partially studied due to bad conservation of material. –, 0; *, damaged specimens.



Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es