Parameter constraints of grazing response functions. Implications for phytoplankton bloom initiation

Authors

  • Jordi Solé Institut de Ciències del Mar, CSIC
  • Emilio García-Ladona Institut de Ciències del Mar, CSIC
  • Jaume Piera Institut de Ciències del Mar, CSIC
  • Marta Estrada Institut de Ciències del Mar, CSIC

DOI:

https://doi.org/10.3989/scimar.04271.18A

Keywords:

algal blooms, plankton, prey selection, grazing functions, multispecies model, mathematical constraints

Abstract


Phytoplankton blooms are events of production and accumulation of phytoplankton biomass that influence ecosystem dynamics and may also have effects on socio-economic activities. Among the biological factors that affect bloom dynamics, prey selection by zooplankton may play an important role. Here we consider the initial state of development of an algal bloom and analyse how a reduced grazing pressure can allow an algal species with a lower intrinsic growth rate than a competitor to become dominant. We use a simple model with two microalgal species and one zooplankton grazer to derive general relationships between phytoplankton growth and zooplankton grazing. These relationships are applied to two common grazing response functions in order to deduce the mathematical constraints that the parameters of these functions must obey to allow the dominance of the lower growth rate competitor. To assess the usefulness of the deduced relationships in a more general framework, the results are applied in the context of a multispecies ecosystem model (ERSEM).

Downloads

Download data is not yet available.

References

Anderson T.R., Gentleman W.C., Sinha B. 2010. Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model. Progr. Oceanogr. 87(1-4): 201-213. http://dx.doi.org/10.1016/j.pocean.2010.06.003

Armstrong R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39(3): 597-608. http://dx.doi.org/10.4319/lo.1994.39.3.0597

Armstrong R.A. 2003. A hybrid spectral representation of phytoplankton growth and zooplancton response: The "control rod" model of plankton interaction. Deep Sea Res. Part II 50: 2895-2916. http://dx.doi.org/10.1016/j.dsr2.2003.07.003

Baretta J., Baretta-Bekker J. 1997. Special issue: European regional seas ecosystem model II. J. Sea Res. 38: 169-413. http://dx.doi.org/10.1016/S1385-1101(97)00054-3

Baretta J.W., Ebenhöh W., Ruardij P. 1995. The European regional seas ecosystem model: a complex marine ecosystem model. Neth. J. Sea Res. 33: 233-246. http://dx.doi.org/10.1016/0077-7579(95)90047-0

Baretta-Bekker J.G., Baretta J., Rasmussen E. 1995. The microbial food web in the European regional seas ecosystem model. Neth. J. Sea Res. 33: 363-379. http://dx.doi.org/10.1016/0077-7579(95)90053-5

Bell T. 2002. The ecological consequences of unpalatable prey: phytoplankton response to nutrient and predator additions. Oikos 99(1): 59-68. http://dx.doi.org/10.1034/j.1600-0706.2002.990106.x

Buskey E., Hyatt C. 1995. Effects of the Texas (USA) 'brown tide' alga on planktonic grazers. Mar. Ecol. Prog. Ser. 126: 285-292. http://dx.doi.org/10.3354/meps126285

Cropp R., Norbury J. 2013. Modelling plankton ecosystems and the Library of Lotka. In: Blackford J., Allen I., et al., Advances in Marine Ecosystem Modelling Research (III). J. Mar. Syst. 125: 3-13. http://dx.doi.org/10.1016/j.jmarsys.2012.08.005

Ebenhöh W., Baretta-Bekker J., Baretta J. 1997. The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing. J. Sea Res. 38: 173-193. http://dx.doi.org/10.1016/S1385-1101(97)00043-9

Flynn K.J. 2002. Toxin production in migrating dinoagellates: a modelling study of PSP producing alexandrium. Harmful Algae, 1: 147-155. http://dx.doi.org/10.1016/S1568-9883(02)00028-8

Flynn K.J. 2010. Do external resource ratios matter? Implications for modelling eutrophication events and controlling harmful algal blooms. J. Mar. Syst. 83: 170-180. http://dx.doi.org/10.1016/j.jmarsys.2010.04.007

Flynn K.J., Iringoien X. 2009. Why aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods. Mar. Ecol. Prog. Ser. 377: 79-89. http://dx.doi.org/10.3354/meps07865

Flynn K.J., Davidson K., Cunningham A. 1996. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357-372. http://dx.doi.org/10.1016/0022-0981(95)00140-9

Gentleman W.C., Neuheimer A.B. 2008. Functional responses and ecosystem dynamics: how clearance rates explain the influence of satiation, food-limitation and acclimation. J. Plank. Res. 30: 1215-1231. http://dx.doi.org/10.1093/plankt/fbn078

Gentleman W., Leising A., Frost B., et al. 2003. Functional responses for zooplankton feeding on multiple resources: a critical review of assumed biological dynamics. Deep Sea Res. Part II 50: 2847-2875. http://dx.doi.org/10.1016/j.dsr2.2003.07.001

Grover J.P. 1995. Competition, herbivory, and enrichment: nutrient-based models for edible and inedible plants. Am. Nat. 145(5): 746-774. http://dx.doi.org/10.1086/285766

Guisande C., Frangópulos M., Maneiro I., et al. 2002. Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorus limitation. Mar. Ecol. Prog. Ser. 225: 169-176. http://dx.doi.org/10.3354/meps225169

Holling C. 1959. Some characteristics of simple types of predation and parasitism. Can. Entom. 91: 385-398. http://dx.doi.org/10.4039/Ent91385-7

Holt R., Grover J., Tilman D. 1994. Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am. Nat. 144(5): 741-771. http://dx.doi.org/10.1086/285705

Irigoien X., Flynn K.J., Harris R.P. 2005. Phytoplankton blooms: a loophole in microzooplankton grazing impact? J. Plankton Res. 27: 313-321. http://dx.doi.org/10.1093/plankt/fbi011

Jessup C.M., Bohannan B.J.M. 2008. The shape of an ecological trade-off varies with environment. Ecol. Let. 11: 947-959. http://dx.doi.org/10.1111/j.1461-0248.2008.01205.x PMid:18557986

Kierstead H., Slobodkin L. 1953. The size of water masses containing plankton blooms. J. Mar. Res. 12: 141-147.

Kretzschmar M., Nisbet R., MacCauley E. 1993. A predator-prey model for zooplankton grazing on competing algal populations. Theor. Popul. Biol. 44: 32-66. http://dx.doi.org/10.1006/tpbi.1993.1017

Leibold M.A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134: 922-949. http://dx.doi.org/10.1086/285022

Leibold M.A. 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147: 784-812. http://dx.doi.org/10.1086/285879

Leising A., Horner R., Pierson J., et al. 2005. The balance between microzooplankton grazing and phytoplankton growth in a highly productive estuarine fjord. Progr. Oceanogr. 67: 366-383. http://dx.doi.org/10.1016/j.pocean.2005.09.007

Litchman E., Klausmeier C. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615-639. http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173549

Maestrini S., Granéli E. 1991. Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom: an hypothesis. Ocean. Acta 14: 397-413.

Margalef R., Estrada M., Blasco D. 1979. Functional morphology of organisms involved in red tides, as adapted do cecaying turbulence. In: Taylor D.L. and Sliger H.H. (eds), Toxic dinoagellate blooms. Elsevier, North Holland, pp. 315-320.

May R.M. 1974. Stability and Complexity in Model Ecosystems. Princeton University Press. 263 pp.

Mitra A., Flynn K. 2005. Predator-prey interactions: is 'ecological stoichiometry' sufficient when good food goes bad? J. Plankton Res. 27: 393-399. http://dx.doi.org/10.1093/plankt/fbi022

Mitra A., Flynn K. 2006. Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2: 194-197. http://dx.doi.org/10.1098/rsbl.2006.0447 PMid:17148360 PMCid:PMC1618909

Murray J. 1989. Mathematical Biology. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-08539-4

Pätsch J., Radach G. 1997. Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations. J. Sea Res. 38: 275-310. http://dx.doi.org/10.1016/S1385-1101(97)00051-8

Pitchford J., Brindley J. 1999. Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J. Plankton Res. 21: 525-547. http://dx.doi.org/10.1093/plankt/21.3.525

Radach G., Pätsch J. 1997. Climatological annual cycles of nutrients and chlorophyll in the North Sea. J. Sea Res. 38: 231-248. http://dx.doi.org/10.1016/S1385-1101(97)00048-8

Sailley S., Vogt M., Doney S., et al. 2013. Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol. Modell. 261-262: 43-57. http://dx.doi.org/10.1016/j.ecolmodel.2013.04.006

Schaffer W.M. 1981. Ecological Abstraction: The Consequences of Reduced Dimensionality in Ecological Models. Ecol. Monogr. 51: 383-401. http://dx.doi.org/10.2307/2937321

Smayda T.J., Reynolds C.S. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoagellate blooms. J. Plankton Res. 23(5): 447-461. http://dx.doi.org/10.1093/plankt/23.5.447

Solé J., Estrada M., García-Ladona E. 2006a. Biological controls of Harmful Algal Blooms: A modelling study. J. Mar. Syst. 61: 165-179. http://dx.doi.org/10.1016/j.jmarsys.2005.06.004

Solé J., García-Ladona E., Estrada M. 2006b. The role of selective predation in Harmful Algal Blooms. J. Mar. Syst. 62: 46-64. http://dx.doi.org/10.1016/j.jmarsys.2006.04.002

Steele J. 1974. The structure of marine ecosystems. Harvard University Press. http://dx.doi.org/10.4159/harvard.9780674592513

Teramoto E., Kawasaki K., Shigesada N. 1979. Switching effect of predation on competitive prey species. J. Theor. Biol. 79: 303-315. http://dx.doi.org/10.1016/0022-5193(79)90348-5

Tillmann U., Hesse K., Colijn F. 2000. Planktonic primary production in the German Wadden Sea. J. Plankton Res. 22: 1253-1276. http://dx.doi.org/10.1093/plankt/22.7.1253

Touzet N., Franco J., Raine R. 2007. Influence of inorganic nutrition on growth and PSP toxin production of Alexandrium minutum (Dinophyceae) from Cork Harbour, Ireland. Toxicon 50: 106-119. http://dx.doi.org/10.1016/j.toxicon.2007.03.001 PMid:17452045

Truscott J. 1995. Environmental forcing of simple plankton models. J. Plankton Res. 17: 2207-2232. http://dx.doi.org/10.1093/plankt/17.12.2207

Truscott J., Brindley J. 1994. Ocean plankton populations as excitable media. Bull. Math. Biol. 56: 981-998. http://dx.doi.org/10.1007/BF02458277

van Donk E. 1997. Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals. Aq. Ecol. 31: 53-58. http://dx.doi.org/10.1023/A:1009951622185

Vichi M., Pinardi N., Masina S. 2007. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory. J. Mar. Syst. 64: 89-109. http://dx.doi.org/10.1016/j.jmarsys.2006.03.006

Wyatt T., Horwood J. 1973. Model which generates red tides. Nature 244: 238-240. http://dx.doi.org/10.1038/244238a0

Yoshida T., Hairston N.H., Ellner S. 2004. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc. R. Soc. London, 271: 1947-1953. http://dx.doi.org/10.1098/rspb.2004.2818 PMid:15347519 PMCid:PMC1691804

Published

2016-09-30

How to Cite

1.
Solé J, García-Ladona E, Piera J, Estrada M. Parameter constraints of grazing response functions. Implications for phytoplankton bloom initiation. Sci. mar. [Internet]. 2016Sep.30 [cited 2024Mar.28];80(S1):129-37. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1664

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2