Variability of planktonic and epiphytic vibrios in a coastal environment affected by Ostreopsis blooms

Authors

  • Judit Bellés-Garulera Institut de Ciències del Mar-CSIC
  • Magda Vila Institut de Ciències del Mar-CSIC
  • Encarna Borrull Institut de Ciències del Mar-CSIC
  • Pilar Riobó Instituto de Investigaciones Marinas, CSIC
  • José M. Franco Instituto de Investigaciones Marinas, CSIC
  • Maria Montserrat Sala Institut de Ciències del Mar-CSIC

DOI:

https://doi.org/10.3989/scimar.04405.01A

Keywords:

Vibrio, bacteria, particles, Mediterranean, HAB, dinoflagellates

Abstract


Vibrios include several pathogenic bacteria that occur in aquatic environments. The presence of Vibrio has been assessed in many ecosystems by culture-based techniques. However, little is known on the contribution of Vibrios in the sea, especially in areas subject to harmful algal blooms. A preliminary study in Sant Andreu de Llavaneres beach (NW Mediterranean) showed the presence of some Vibrio species during a recurrent bloom of the harmful benthic dinoflagellate Ostreopsis cf. ovata. In order to establish the importance of Vibrios in a coastal area of the NW Mediterranean and to study the association with the dinoflagellate, we conducted a sampling monitoring for one year to quantify the concentration of Vibrios both in the water (free-living and attached to particles) and in the epiphytic community of macroalgae. The aims were 1) to evaluate the relative abundance of Vibrio in the epiphytic and in the planktonic bacterial community, 2) to assess the percentage of free-living and attached Vibrios in the planktonic community, and 3) to determine whether the presence of Vibrios is associated with the blooms of the toxic dinoflagellate Ostreopsis or with other environmental parameters. For this purpose, a CARD-FISH molecular probe was applied for the specific detection of bacteria belonging to the genus Vibrio. Cells were quantified and the abundance of both particles and bacteria attached to particles were assessed. The maximum Vibrio concentration (1.3x104 cells ml–1 and 1.4x106 cells g–1 FW, for planktonic and epiphytic samples, respectively) was detected in September. Free-living Vibrios contributed 0.38±0.24% to the total free-living planktonic community and 1.12±0.28% to the epiphytic bacterial community. However, their contribution was particularly high in the planktonic community attached to particles (17.37±20.49%). Although in the planktonic community Vibrio was found preferentially free-living (82.63±20.01%), particles are a niche for Vibrios, since in particles Vibrios may represent up to 72% of the total attached bacterial community. Abundance of planktonic Vibrio was correlated with Ostreopsis concentration and it is likely that they play a role in the wound infections suffered by beach users during the bloom.

Downloads

Download data is not yet available.

References

Alonso-Sáez L., Balagué V., Sà E.L., et al. 2007. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS. Microbiol. Ecol. 60: 98-112. http://dx.doi.org/10.1111/j.1574-6941.2006.00276.x PMid:17250750

Alonso-Sáez L., Vázquez-Domínguez E., Pinhassi J. et al. 2008. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11: 397-409. http://dx.doi.org/10.1007/s10021-008-9129-0

Ashton M., Rosado W., Govind N.S. et al. 2003. Culturable and nonculturable bacterial symbionts in the toxic benthic dinoflagellate Ostreopsis lenticularis. Toxicon 42: 419-424. http://dx.doi.org/10.1016/S0041-0101(03)00174-0

Asplund M.E., Rehnstam-Holm A.S., Atnur V., et al. 2011. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ. Microbiol. 13: 2738-2751. http://dx.doi.org/10.1111/j.1462-2920.2011.02545.x PMid:21895909

Baffone W., Tarsi R., Pane L. et al. 2006. Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ. Microbiol. 8: 1299-1305. http://dx.doi.org/10.1111/j.1462-2920.2006.01011.x PMid:16817938

Barlaan E.A., Furukawa S., Kazuisha T. 2007. Detection of bacteria associated with harmful algal blooms from coastal and microcosm environments using electronic microarrays. Environ. Microbiol. 9: 690-702. http://dx.doi.org/10.1111/j.1462-2920.2006.01188.x PMid:17298369

Battocchi C., Totti C., Vila M., et al. 2010. Monitoring of toxic microalga Ostreopsis (Dinoflagellate) species in coastal waters of the Mediterranean Sea using molecular PCR based assay combined with light microscopy method. Mar. Pollut. Bull. 60:1074-1084. http://dx.doi.org/10.1016/j.marpolbul.2010.01.017 PMid:20188383

Borrull E. 2011. Diversidad y actividad de la comunidad microbiana asociada a proliferaciones de fitobentos tóxico. Master thesis. Universitat de Barcelona.

Canigral I., Moreno Y., Alonso J.L., et al. 2010. Detection of Vibrio vulnificus in seafood, seawater and wastewater samples from a Mediterranean coastal area. Microbiol. Res. 165: 657-664. http://dx.doi.org/10.1016/j.micres.2009.11.012 PMid:20106642

Cavallo R.A., Stabili L. 2004. Culturable vibrios biodiversity in the Northern Ionian Sea (Italian coasts). Sci. Mar. 68: 23-29. http://dx.doi.org/10.3989/scimar.2004.68s123

De Paola A., Hopkins L.H., Peeler J.T., et al. 1990. Incidence of Vibrio parahaemolyticus in US coastal waters and oysters. Appl. Environ. Microbiol. 8: 2299-2302.

Doucette G.J., Kodama G., Franca S. 1998. Bacterial interactions with harmful algal bloom species: Bloom ecology, toxigenesis, and cytology. In: Andersen D.M., Cembella A.D., Hallegraeff G.M. (eds) The Physiological Ecology of Harmful Algal Blooms, NATO/ASI Series. Springer Verlag, Heidelberg, pp. 619-646.

Eiler A., Johansson M., Bertilsson S. 2006. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl. Environ. Microbiol. 72: 6004-6011. http://dx.doi.org/10.1128/AEM.00917-06 PMid:16957222 PMCid:PMC1563599

Froelich B., Ayrapetyan M., Oliver J.D. 2013. Integration of Vibrio vulnificus into marine aggregates and its subsequent uptake by Crassostrea virginica oysters. Appl. Environ. Microbiol. 79: 1454-1458. http://dx.doi.org/10.1128/AEM.03095-12 PMid:23263962 PMCid:PMC3591956

Gallacher S., Flynn K.J., Franco J.M. et al. 1997. Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp (Dinophyta) in culture. Appl. Environ. Microbiol. 63: 239-245. PMid:9065273 PMCid:PMC168316

Grasshoff H., Ehrhardt M., Kremling K. 1983. Methods of Seawater Analysis. Verlag Chemie, Germany.

Groben R., Doucette G.J., Kopp M., et al. 2000. 16S rRNA targeted probes for the identification of bacterial strains isolated from cultures of the toxic dinoflagellate Alexandrium tamarense. Microb. Ecol. 39: 186-196. PMid:12035095

Gonzalez D.J., Gonzalez R.A., Froelich B.A. et al. 2014. Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar. Ecol. Prog. Ser. 505: 29-36. http://dx.doi.org/10.3354/meps10771

Honsell G., Bonifacio A., De Bortoli M., et al. 2013. New insights on cytological and metabolic features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): A multidisciplinary approach. PLOS ONE, 8: e57291. http://dx.doi.org/10.1371/journal.pone.0057291 PMid:23460837 PMCid:PMC3584116

Huggett M.J., Crocetti G.R., Kjelleberg S. 2008. Recruitment of the sea urchin Heliocidaris erythrogramma and the distribution and abundance of inducing bacteria in the field. Aquat. Microb. Ecol. 53: 161-171. http://dx.doi.org/10.3354/ame01239

Kodama M., Doucette G.J., Green D.H. 2006. Relationships between bacteria and harmful algae. In: Granelli E. and Turner J.T. (eds) Ecology of Harmful Algae, Springer, pp: 243-255. http://dx.doi.org/10.1007/978-3-540-32210-8_19

Lenes J.M., Walsh J.J., Barrow B.P. 2013. Simulating cell death in the termination of Karenia brevis blooms: implications for predicting aerosol toxicity vectors to humans. Mar. Ecol. Prog. Ser. 493: 71-81. http://dx.doi.org/10.3354/meps10515

Lenoir S., Ten-Hage L., Turquet J. et al. 2004. First evidence of palytoxin analogues from an Ostreopsis mascarenensis (Dinophyceae) benthic bloom in Southwestern Indian Ocean. J. Phycol. 40: 1042-1051. http://dx.doi.org/10.1111/j.1529-8817.2004.04016.x

Lopez-Joven C., de Blas I., Furones M.D. et al. 2015. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast. Front. Microbiol. 6: 736. http://dx.doi.org/10.3389/fmicb.2015.00736 PMid:26284033 PMCid:PMC4523031

Lu Y. H., Chai T.J., Hwang D.F. 2000. Isolation of bacteria from toxic dinoflagellate Alexandrium minutum and their effects on algae toxicity. J. Nat. Toxins 9: 409-417. PMid:11126517

Lyons M.M., Lau Y.T., Carden W.E. et al. 2007. Characteristics of marine aggregates in shallow-water ecosystems: Implications for disease ecology. Ecohealth 4: 406-420. http://dx.doi.org/10.1007/s10393-007-0134-0

Main C.R., Salvitti L.R., Whereat E.B. et al. 2015. Community-level and species-specific associations between phytoplankton and particle-associated Vibrio species in Delaware's inland bays. Appl. Environ. Microbiol. 81: 5703-5713. http://dx.doi.org/10.1128/AEM.00580-15 PMid:26070682 PMCid:PMC4551232

Mangialajo L., Ganzin N., Accoroni S. et al. 2011. Trends in Ostreopsis proliferation along the Northern Mediterranean coasts. Toxicon 57: 408-420. http://dx.doi.org/10.1016/j.toxicon.2010.11.019 PMid:21145339

Manz W., Amann R., Ludwig W., et al. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria - problems and solutions. Syst. Appl. Microbiol.15: 593-600. http://dx.doi.org/10.1016/S0723-2020(11)80121-9

Mizunoe Y., Wai S.N., Ishikawa T. et al. 2000. Resuscitation of viable but nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol. Lett. 186: 115-120. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09091.x PMid:10779722

Mourino-Perez R.R., Worden A.Z., Azam F. 2003. Growth of Vibrio cholerae O1 in red tide waters off California. Appl. Environ. Microbiol. 69: 6923-6931. http://dx.doi.org/10.1128/AEM.69.11.6923-6931.2003 PMid:14602656 PMCid:PMC262290

Neogi S.B., Islam M.S., Nair G.B. et al. 2012. Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wet. Ecol. Manag. 20: 271-285. http://dx.doi.org/10.1007/s11273-012-9247-5

Oberbeckmann S., Fuchs B.M., Meiners M. et al. 2012. Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb. Ecol. 63: 543-551. http://dx.doi.org/10.1007/s00248-011-9990-9 PMid:22202887

Penna A., Vila M., Fraga S. et al. 2005. Characterization of Ostreopsis and Coolia (Dinophyceae) isolates in the western Mediterranean Sea based on morphology, toxicity and internal transcribed spacer 5.8s rDNA sequences. J. Phycol. 41: 212-225. http://dx.doi.org/10.1111/j.1529-8817.2005.04011.x

Pérez-Guzman L., Pérez-Matos A.E., Rosado W. et al. 2008. Bacteria associated with toxic clonal cultures of the dinoflagellate Ostreopsis lenticularis. Mar. Biotech. 10: 492-496. http://dx.doi.org/10.1007/s10126-008-9088-7 PMid:18365282

Pernthaler A., Pernthaler J., Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68: 3094-3101. http://dx.doi.org/10.1128/AEM.68.6.3094-3101.2002 PMid:12039771 PMCid:PMC123953

Pinhassi J., Sala M.M., Havskum H. et al. 2004. Changes in bacterioplankton composition under different phytoplankton regimes. Appl. Environ. Microbiol. 70: 6753-6766. http://dx.doi.org/10.1128/AEM.70.11.6753-6766.2004 PMid:15528542 PMCid:PMC525254

Porter K.G., Feig F.Y. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948. http://dx.doi.org/10.4319/lo.1980.25.5.0943

Reilly G.D., Reilly C.A., Smith E.G. et al. 2011. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey. Euro Surveill., 16: 1994

Ruiz-González C., Lefort T., Galí M. et al. 2012 Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters. FEMS Microbiol. Ecol. 79: 661-674 http://dx.doi.org/10.1111/j.1574-6941.2011.01247.x PMid:22092707

Ruppert J., Panzig B., Guertler L. et al. 2004. Two cases of severe sepsis due to Vibrio vulnificus wound infection acquired in the Baltic Sea. Eur. J. Clin. Microbiol. Infect. Dis. 23: 912-915. http://dx.doi.org/10.1007/s10096-004-1241-2

Sala M.M., Balagué V., Pedrós-Alio C. et al. 2005. Phylogenetic and functional diversity of bacterioplankton during Alexandrium spp. blooms. FEMS Microbiol. Ecol. 54: 257-267. http://dx.doi.org/10.1016/j.femsec.2005.04.005 PMid:16332324

Shears N.T., Ross P.M. 2009. Blooms of benthic dinoflagellates of the genus Ostreopsis; an increasing and ecologically important phenomenon on temperate reefs in New Zealand and worldwide. Harmful Algae 8: 916-925 http://dx.doi.org/10.1016/j.hal.2009.05.003

Shets F.M., van den Berg H.H., Demeulmeester A.A. et al. 2006. Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Euro Surveill. 11: 3077.

Simoni F., di Paolo C., Gori L. et al. 2004. Further investigation on blooms of Ostreopsis ovata, Coolia monotis, Prorocentrum lima on the macroalgae of artificial and natural reefs in the Northern Tyrrhenian Sea. Harmful Algae News 26: 5-7.

Szabo G., Preheim S.P., Kauffman K.M. et al. 2013. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton. ISME J. 7: 509-519. http://dx.doi.org/10.1038/ismej.2012.134 PMid:23178668 PMCid:PMC3578574

Takemura A.E., Chien D.M., Polz M.E. 2014. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5: 38. http://dx.doi.org/10.3389/fmicb.2014.00038 PMid:24575082 PMCid:PMC3920100

Tamplin M.L., Gauzens M.L., Huq A. et al. 1990. Attachment of Vibrio-cholerae serogroup-O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microb. 56: 1977-1980. PMid:2383016 PMCid:PMC184543

Thompson J.R., Randa M.A., Marcelino L.A. et al. 2004. Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70: 4103-4110. http://dx.doi.org/10.1128/AEM.70.7.4103-4110.2004 PMid:15240289 PMCid:PMC444776

Thompson J.R., Pacocha S., Pharino C. et al. 2005. Genotypic diversity within natural coastal bacterioplankton population. Science 307: 1311-1313. http://dx.doi.org/10.1126/science.1106028 PMid:15731455

Tosteson T.R., Ballantine D.L., Tosteson C.G. et al. 1989. Associated bacterial-flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus-toxicus. Appl. Environ. Microbiol. 55: 137-141. PMid:2705766 PMCid:PMC184067

Tubaro A., Durando P., Del Favero G. et al. 2011. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57: 478-495. http://dx.doi.org/10.1016/j.toxicon.2011.01.005 PMid:21255599

Vezzulli L., Previati M., Pruzzo C. et al. 2010. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12: 2007-2019. http://dx.doi.org/10.1111/j.1462-2920.2010.02209.x PMid:20370818

Vezzulli L., Brettar I., Pezzati E. et al. 2012. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J. 6: 21-30. http://dx.doi.org/10.1038/ismej.2011.89 PMid:21753799 PMCid:PMC3246245

Vezzulli, L., Colwell R.R., Pruzzo C. 2013. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65: 817-825. http://dx.doi.org/10.1007/s00248-012-0163-2 PMid:23280498

Vila M, Garcés E., Masó M. 2001. Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean. Aquat. Microb. Ecol. 26: 51-60. http://dx.doi.org/10.3354/ame026051

Vila M., Masó M., Sampedro N. et al. 2008. The genus Ostreopsis in recreational waters of the Catalan Coast and Balearic Islands (NW Mediterranean Sea): is this the origin of human respiratory difficulties? In: Proceedings of the 12 International Conference on Harmful Algae, pp. 334-336.

Vila M., Arin L., Battocchi C. et al. 2012a. Management of Ostreopsis blooms in recreational waters along the Catalan coast (NW Mediterranean Sea): cooperation between a research project and a monitoring program. Cryptogamie Algologie 33: 143-152. http://dx.doi.org/10.7872/crya.v33.iss2.2011.143

Vila M., Riobó P., Bravo I. et al. 2012b. A three-year time series of toxic Ostreopsis blooming in a NW Mediterranean coastal site: Preliminary results. In: Pagou P. and Hallegraeff G. (eds). Proceeding of the 14th International Conference on Harmful Algae. ISSHA and IOC of UNESCO, pp. 111-113.

Vila M., Abós-Herràndiz R., Isern-Fontanet J., et al. 2016. Establishing the link between Ostreopsis cf. ovata blooms and human health impacts using ecology and epidemiology. Sci. Mar. 80S1: 107-115.

Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231. http://dx.doi.org/10.1016/0011-7471(63)90358-9

Worden A.Z., Seidel M., Smriga S. et al. 2006. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 8: 21-29. http://dx.doi.org/10.1111/j.1462-2920.2005.00863.x PMid:16343318

Published

2016-09-30

How to Cite

1.
Bellés-Garulera J, Vila M, Borrull E, Riobó P, Franco JM, Montserrat Sala M. Variability of planktonic and epiphytic vibrios in a coastal environment affected by Ostreopsis blooms. Sci. mar. [Internet]. 2016Sep.30 [cited 2024Mar.29];80(S1):97-106. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1661

Issue

Section

Articles