Scientia Marina, Vol 80, No S1 (2016)

Morphological adaptations to small size in the marine diatom Minidiscus comicus


https://doi.org/10.3989/scimar.04331.06C

David Jewson
Freshwater Laboratory, University of Ulster , United Kingdom

Akira Kuwata
Tohoku National Fisheries Research Institute , Spain

Lluïsa Cros
Institut de Ciències del Mar, CSIC , Spain

José Manuel Fortuño
Institut de Ciències del Mar, CSIC , Spain

Marta Estrada
Institut de Ciències del Mar, CSIC , Spain

Abstract


Minidiscus comicus is a marine centric diatom that has cells with diameters as small as 1.9 μm, which brings it close to the lower limit of diatom cell size and also near to the lower limit of photosynthetic eukaryote cells. One of the questions that this raises is whether the cycle of size decline and size restoration used by most diatoms to time their life cycle can operate in such small cells. In samples collected from the western Mediterranean during 2009, M. comicus cells were found with diameters ranging from 1.9 to 6.0 μm. The larger cells were initial cells after size restoration, and these still had the valves of their parent cells attached, making it possible to determine the diameter of the threshold below which size restoration could be induced (3.1 μm). During size decline, M. comicus cell shape changed from discoid to spherical. This adaptation helped to reduce and even halt the rate of cell volume decrease, allowing cells to continue to use diameter decline as a clocking mechanism. The results show how adaptable the diatom cell wall can be, in spite of its rigid appearance.

Keywords


marine diatom; Minidiscus comicus; size change; size limit; size restoration

Full Text:


HTML PDF XML

References


Aké-Castillo J.A., Hernández-Becerril D.U., Meave del Castillo M.E., et al. 2001. Species of Minidiscus (Bacillariophyceae) in the Mexican Pacific Ocean. Cryptogam. Algol. 22: 101-107. http://dx.doi.org/10.1016/S0181-1568(00)01051-5

Barton A.D., Finkel Z.V., Ward B.A., et al. 2013. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol. Oceanogr. 58: 254-266. http://dx.doi.org/10.4319/lo.2013.58.1.0254

Bérard-Therriault L., Poulin M., Bosse L. 1999. Guide d'identification du phytoplankton marin de l'estuaire et du Golfe du Saint Laurent incluant également certains protozoaires. Publ. Spéc. Can. Sci. Halieut. Aquat. 128: 1-387

Chepurnov V.A., Mann D.G., Sabbe K., et al. 2004. Experimental studies on sexual reproduction in diatoms. Int. Rev. Cytol. 237: 91-154. http://dx.doi.org/10.1016/S0074-7696(04)37003-8

Clark J.R., Lenton T.M., Williams H.T.P., et al. 2013. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol. Oceanogr. 58: 1008-1022. http://dx.doi.org/10.4319/lo.2013.58.3.1008

D'Alelio D., d'Alcala M.R., Dubroca L., et al. 2010. The time for sex: A biennial life cycle in a marine planktonic diatom. Limnol. Oceanogr. 55: 106-114. http://dx.doi.org/10.4319/lo.2010.55.1.0106

Estrada M., Latasa M., Emelianov M., et al. 2014. Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean. Deep-Sea Res. I. 94: 45-61. http://dx.doi.org/10.1016/j.dsr.2014.08.003

Geider R.J., Platt T., Raven J.A. 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Progr. Ser. 30: 93-104. http://dx.doi.org/10.3354/meps030093

Hasle G.R., Syvertsen E.E. 1997. Marine diatoms. In: Tomas C.R. (ed) Identifying marine phytoplankton. Academic Press, San Diego. pp. 5-385. http://dx.doi.org/10.1016/B978-012693018-4/50004-5

Jewson D.H. 1992a. Size reduction, reproductive strategy and the life cycle of a centric diatom. Phil. Trans. R. Soc. Lond. B, 336: 191-213. http://dx.doi.org/10.1098/rstb.1992.0056

Jewson D.H. 1992b. Life cycle of a Stephanodiscus sp. (Bacillariophyta). J. Phycol. 28: 856-866. http://dx.doi.org/10.1111/j.0022-3646.1992.00856.x

Jewson D.H., Granin N.G. 2015. Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. Eur J. Phycol. 50: 1-19. http://dx.doi.org/10.1080/09670262.2014.979450

Jewson D.H., Granin N.G., Zhdarnov A.A., et al. 2010. Vertical mixing, size change and resting stage formation of the planktonic diatom Aulacoseira baicalensis. Eur. J. Phycol. 45: 354-364. http://dx.doi.org/10.1080/09670262.2010.492915

Jewson D.H., Granin N.G., Gnatovsky R.Y., et al. 2015. Coexistence of two diatom Cyclotella species in the plankton of Lake Baikal. Freshwat. Biol. 60: 2113-2126. http://dx.doi.org/10.1111/fwb.12636

Kaczmarska I., Lovejoy C., Potvin M., et al. 2009. Morphological and molecular characteristics of selected species of Minidiscus (Bacillariophyta, Thalassiosiraceae). Eur. J. Phycol. 44: 461-475. http://dx.doi.org/10.1080/09670260902855873

Kang J.S., Kang S.H., Kim D., et al. 2003. Planktonic centric diatom Minidiscus chilensis dominated sediment trap material in eastern Bransfield Strait, Antarctica. Mar. Ecol. Prog. Ser. 255: 93-99. http://dx.doi.org/10.3354/meps255093

Lange K.B. 1985. Spatial and seasonal variations of diatom assemblages off the Argentinian coast (south-western Atlantic). Oceanol. Acta 8: 361-369.

Lee S.D., Park J.S., Lee J.H. 2012. New Record of Diatom Species in Korean Coastal Waters. Korean J. Environ. Biol. 30: 245-271.

Lewis W.M. 1983. Interruption of synthesis as a cost of sex in small organisms. Am. Nat. 121: 825-833. http://dx.doi.org/10.1086/284106

Lewis W.M. 1984. The diatom sex clock and its evolutionary importance. Am. Nat. 123: 73-80. http://dx.doi.org/10.1086/284187

Litchman E., Klausmeier C.A., Yoshiyama K. 2009. Contrasting size evolution in marine and freshwater diatoms. PNAS. 106: 2665-2670. http://dx.doi.org/10.1073/pnas.0810891106 PMid:19202058 PMCid:PMC2650323

Macdonald J.D. 1869. On the structure of the diatomaceous frustule, and its genetic cycle. Ann. Mag. Nat. Hist. 4: 1-8. http://dx.doi.org/10.1080/00222936908695866

Mann D.G. 2011. Size and sex. In: Seckbach J., Kociolek J.P. (eds), Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, pp. 145-165. http://dx.doi.org/10.1007/978-94-007-1327-7_6

Martin-Cereceda M., Cox E.J. 2011. Morphological variation in a small Thalassiosira species (Bacillariophyta) under different culture regimes. Bot. Mar. 54: 563-574. http://dx.doi.org/10.1515/BOT.2011.063

Mouri-o-Carballido B., Hojas E., Cerme-o P., et al. 2016. Control of nutrient supply on picoplankton community structure during three contrasting seasons in the NW Mediterranean Sea. Mar. Ecol. Progr. Ser. 543: 1-19. http://dx.doi.org/10.3354/meps11558

Narkov T., Theriot E.C., Alverson A.J. 2014. Using phylogeny to model cell size evolution in marine and freshwater diatoms. Limnol. Oceanogr. 59: 79-86. http://dx.doi.org/10.4319/lo.2014.59.1.0079

Percopo I., Siano R., Cerino F., et al. 2011. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Bot. Mar. 54: 243-267. http://dx.doi.org/10.1515/bot.2011.033

Pfitzer E. 1869. Über den Bau und die Zellteilung der Diatomeen. Bot. Zeitung 27: 774-776.

Quiroga I., Chrétiennot-Dinet M.J. 2004. A new species of Minidiscus (Diatomophyceae, Thalassiosiraceae) from the eastern English Channel, France. Bot. Mar. 47: 341-348. http://dx.doi.org/10.1515/BOT.2004.040

Raven J.A. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecol. 12: 503-513. http://dx.doi.org/10.1046/j.1365-2435.1998.00233.x

Reavie E.D., Barbiero R.P. 2013. Recent changes in abundance and cell size of pelagic diatoms in the North American Great Lakes. Phytotaxa 127: 150-162. http://dx.doi.org/10.11646/phytotaxa.127.1.15

Round F.E., Crawford R.M., Mann D.G. 1990. The Diatoms. Cambridge Univ. Press, Cambridge, 747 pp. PMCid:PMC1004178

Shevchenko O.G., Orlova T.Y. 2002. New data on morphology and distribution of Minidiscus comicus (Bacillariophyta). Bot. Zhurnal (St-Petersb.) 87: 17-119 (in Russian).

Takano H. 1981. New and rare diatoms from Japanese marine waters. VI. Three new species in Thalassiosiraceae. Bull. Tokai Reg. Fish. Res. Lab. 105: 31-41.

Tomas C.R. 1997. Identifying Marine Phytoplankton. San Diego, Academic Press.

Vaulot D., Eikrem W., Viprey M., et al. 2008. The diversity of small eukaryotic phytoplankton (≤3?m) in marine ecosystems. FEMS Microbiol. Rev. 32: 795-820. http://dx.doi.org/10.1111/j.1574-6976.2008.00121.x PMid:18564290

Walsby A.E., Reynolds C.S. 1980. Sinking and floating. In: Ignatiades l. (ed.), The physiological ecology of phytoplankton. Blackwell Scientific.

Walsby A.E, Xypolyta A. 1977. The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt. Br. Phycol. J. 12: 215-223. http://dx.doi.org/10.1080/00071617700650231

Winder M., Reuter J.E., Schladow S.G. 2009. Lake warming favors small-sized planktonic diatom species. Proc. R. Soc. London, Ser. B, 276: 427-435. http://dx.doi.org/10.1098/rspb.2008.1200 PMid:18812287 PMCid:PMC2581674




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es