Scientia Marina, Vol 80, No S1 (2016)

Influence of light and nutrients on the vertical distribution of marine phytoplankton groups in the deep chlorophyll maximum

Mikel Latasa
Centro Oceanográfico de Gijón/Xixón (IEO) , Spain

Andrés Gutiérrez-Rodríguez
National Institute of Water and Atmospheric Research , New Zealand

Ana Mª Mª Cabello
Institut Ciències del Mar, CSIC - AZTI-Tecnalia , Spain

Renate Scharek
Centro Oceanográfico de Gijón/Xixón (IEO) , Spain


Ecological traits of phytoplankton are being incorporated into models to better understand the dynamics of marine ecosystems and to predict their response to global change. We have compared the distribution of major phytoplankton groups in two different systems: in surface waters of the NW Mediterranean during key ecological periods, and in the DCM (deep chlorophyll maximum) formed in summer in the temperate NE Atlantic. This comparison disentangled the influence of light and nutrients on the relative position of diatoms, dinoflagellates, prymnesiophytes, pelagophytes, chlorophytes, Synechococcus and Prochlorococcus in these environments. Three clusters formed according to their affinity for nutrients: diatoms, chlorophytes and dinoflagellates as the most eutrophic groups; Synechococcus, pelagophytes and prymnesiophytes as mesotrophic groups; and Prochlorococcus as an oligotrophic group. In terms of irradiance, the phytoplankton groups did not cluster clearly. Comparing the nutrient and light preferences of the groups with their distribution in the DCM, dinoflagellates and chlorophytes appear as the most stressed, i.e. their position was most distant from their optimal light and nutrient conditions. Diatoms stayed in deeper than optimal irradiance layers, probably to meet their high nutrient requirements. On the opposite side, low nutrient requirements allowed Prochlorococcus to remain in the uppermost part of the DCM layer. The slight sub-optimal position of Synechococcus and prymnesiophytes with regard to their nutrient requirements suggests that their need for high irradiance plays a significant role in their location within the DCM. Finally, pelagophytes remained in deep layers without an apparent need for the high nutrient concentrations at those depths.


marine phytoplankton groups; ecological traits; irradiance; nutrients; deep chlorophyll maximum

Full Text:



Alves-de-Souza C., Gonzalez M.T., Iriarte J.L. 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. J. Plankton Res. 30: 1233-1243.

Barber R.T., Hiscock M.R. 2006. A rising tide lifts all phytoplankton: Growth response of other phytoplankton taxa in diatom-dominated blooms. Glob. Biogeochem. Cycles 20: GB4S03.

Berges J.A., Falkowski P.G. 1998. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol. Oceanogr. 43: 129-135.

Cabello A.M. 2015. Marine photosynthetic eukaryotes: community structure at different spatial scales. Ph.D. thesis, Univ. Las Palmas de Gran Canaria, 241 pp.

Cook S.S., Jones R.C., Vaillancourt R.E., et al. 2013. Genetic differentiation among Australian and Southern Ocean populations of the ubiquitous coccolithophore Emiliania huxleyi (Haptophyta). Phycologia 52: 368-374.

Coupel P., Matsuoka A., Ruiz-Pino D., et al. 2015. Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences 12: 991-1006.

Cullen J.J., Franks P.J.S., Karl D.M., et al. 2002. Physical influences on marine ecosystem dynamics. In: Robinson A.R., McCarthy J.J., Rothschild B.J. (eds), The Sea. John Wiley & Sons Inc., New York, pp. 297-336.

D'Ortenzio F., Ribera d'Alcalà M. 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6: 139-148.

Edwards K.F., Thomas M.K., Klausmeier C.A., et al. 2015. Light and growth in marine phytoplankton: Allometric, taxonomic, and environmental variation. Limnol. Oceanogr. 60: 540-552.

Estrada M. 1978. Mesoscale heterogeneities of the phytoplankton distribution in the upwelling region of NW Africa. In: Boje R., Tomczak M. (eds), Upwelling Ecosystems. Springer-Verlag, Berlin, pp. 15-23.

Estrada M. 1985. Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In: Moraitou-Apostolopoulou M., Kiortsis V. (eds), Mediterranean Marine Ecosystems. Springer, New York, pp. 247-277.

Estrada M. 1991. Phytoplankton assemblages across a NW Mediterranean front: changes from winter mixing to spring stratification. In: Ros J.D., Prat N. (eds) Homage to Ramón Margalef or Why there is such pleasure in studying nature, Oecol. Aquat. 10: 157-185. PMCid:PMC1181396

Estrada M., Salat J. 1989. Phytoplankton assemblages of deep and surface water layers in a Mediterranean frontal zone. Sci. Mar. 53: 203-214.

Estrada M., Varela R.A., Salat J., et al. 1999. Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean). J. Plankton Res. 21: 1-20.

Estrada M., Delgado M., Blasco D., et al. 2016. Phytoplankton across tropical and subtropical regions of the Atlantic, Indian and Pacific oceans. PLoS ONE 11: e0151699. PMid:26982180 PMCid:PMC4794153

Falkowski P.G., Oliver M.J. 2007. Mix and match: how climate selects phytoplankton. Nat. Rev. Microbiol. 5: 813-819. PMid:17853908

Follows M.J., Dutkiewicz S., Grant S., et al. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315: 1843-1846. PMid:17395828

Gregg W.W., Ginoux P., Schopf P.S., et al. 2003. Phytoplankton and iron: Validation of a global three-dimensional ocean biogeochemical model. Deep-Sea Res. II 50: 3143-3169.

Iglesias-Rodriguez M.D., Schofield O.M., Batley J., et al. 2006. Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): The use of microsatellite analysis in marine phytoplankton population studies. J. Phycol. 42: 526-536.

Latasa M., Scharek R., Vidal M., et al. 2010. Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 407: 27-42.

Le Quéré C., Harrison S.P., Prentice I.C., et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Chang. Biol. 11: 2016-2040.

Litchman E., Klausmeier C.A. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615-639.

Litchman E., Klausmeier C.A., Miller J.R., et al. 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3: 585-606.

López-Urrutia Á., Morán X.A.G. 2015. Temperature affects the size structure of phytoplankton communities in the ocean. Limnol. Oceanogr. 60: 733-738.

Mara-ón E., Cerme-o P., Latasa M., et al. 2012. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57: 1266-1278.

Mara-ón E., Cerme-o P., Latasa M., et al. 2015. Resource supply alone explains the variability of marine phytoplankton size structure. Limnol. Oceanogr. 60: 1848-1854.

Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta. 1: 493-509.

Mouri-o-Carballido B., Hojas E., Cerme-o P., et al. 2016. Control of nutrient supply on picoplankton species composition during three contrasting seasons in the NW Mediterranean Sea. Mar. Ecol. Progr. Ser. 543: 1-19.

Not F., Latasa M., Marie D., et al. 2004. A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl. Environ. Microbiol. 70: 4064-4072. PMid:15240284 PMCid:PMC444783

Paasche E. 2002. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503-529.

Quigg A., Finkel Z.V, Irwin A.J., et al. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425: 291-294. PMid:13679916

Read B.A., Kegel J., Klute M.J., et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499: 209-213. PMid:23760476

Reynolds C.S. 1997. Vegetation processes in the pelagic: A model for ecosystem theory. Oldendorf: Ecology Institute.

Reynolds C.S., Huszar V., Kruk C., et al. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417-428.

Sal S., Alonso-Sáez L., Bueno J., et al. 2015. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60: 1212-1221.

Schwaderer A.S., Yoshiyama K., de Tezanos Pinto P., et al. 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnol. Oceanogr. 56: 589-598.

Smayda T.J., Reynolds C.S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49: 95-106.

Venrick E.L. 1990. Phytoplankton in an oligotrophic ocean: species structure and interannual variability. Ecology 71: 1547-1563.

Venrick E.L. 1999. Phytoplankton species structure in the central North Pacific, 1973-1996: variability and persistence. J. Plankton Res. 21: 1029-1042.

Worden A.Z., Follows M.J., Giovannoni S.J., et al. 2015. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347: 1257594. PMid:25678667

Wyatt T. 2014. Margalef's mandala and phytoplankton bloom strategies. Deep-Sea Res. II 101: 32-49.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support