Scientia Marina, Vol 80, No 3 (2016)

Estimating the selectivity of unpaired trawl data: a case study with a pelagic gear

Manu Sistiaga
SINTEF Fisheries and Aquaculture (SFA) , Norway

Bent Herrmann
SINTEF Fisheries and Aquaculture, Fishing Gear Technology , Denmark

Eduardo Grimaldo
SINTEF Fisheries and Aquaculture (SFA) , Norway

Finbarr G. O’Neill
Marine Scotland , United Kingdom


Most selectivity experiments employ either the covered codend or paired gear methods. It is not always possible, however, to use these methods. Owing to operational, biological and/or environmental considerations, there may be no obvious way or it may be inappropriate to pair the test and control data. Hence, it will not be possible to estimate the selectivity of the gear and its uncertainty using standard statistical methods. This study presents a methodology for analysing the selectivity of fishing gears from unpaired test and control data. The uncertainty in the control and test population structures is accounted for by using a double bootstrapping procedure that takes into account both between-haul and within-haul variation. This bootstrapping approach is used to assess the selectivity of two different devices, a 139.5 mm T90 codend and a 135.9 mm codend with 140.9 mm lateral exit windows, in the Barents Sea pelagic cod trawl fishery. The purpose of the experiment was to test and compare the performance of the two devices in pelagic trawl fisheries, where high densities of fish can be encountered. Significant differences were detected between the T90 codend and the codend with the exit windows but only for sizes of cod between 55 and 76 cm.


trawl selectivity; pelagic fisheries; unpaired data; cod

Full Text:



Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Auto. Control 19: 716-722.

Brcic J., Herrmann B., Sala A. 2015. Selective characteristics of a shark-excluding grid device in a Mediterranean trawl. Fish. Res. 172, 352-360.

Council Regulation (Ec) No 517/2008, of 10 June 2008 laying down detailed rules for the implementation of Council Regulation (EC) No. 850/98 as regards the determination of the mesh size and assessing the thickness of twine of fishing nets. Official Journal of the European Union L 151.

Eigaard O., Herrmann B., Nielsen J.R. 2012. Influence of grid orientation and time of day on grid sorting in a small-meshed trawl fishery for Norway pout (Trisopterus esmarkii). Aquat. Living Resour. 25: 15-26.

Fryer R.J. 1991. A model of between-haul variation in selectivity. ICES J. Mar. Sci. 48: 281-290.

Grimaldo E., Larsen R.B., Holst R. 2007. Exit Windows as an alternative selective system for the Barents Sea Demersal Fishery for cod and haddock. Fish. Res. 85: 295-305.

Grimaldo E., Sistiaga M., Larsen R.B. 2008. Evaluation of codends with sorting grids, exit windows and diamond meshes: Size selectivity and fish behaviour. Fish. Res. 91: 271-280.

Herrmann B., Priour D., Krag L.A. 2006. Theoretical study of the effect of round straps on the selectivity in a diamond mesh cod-end. Fish. Res. 80: 148-157.

Herrmann B., Sistiaga M., Nielsen K.N., et al. 2012. Understanding the size selectivity of red fish (Sebastes spp.) in North Atlantic trawl codends. J. Northw. Atl. Fish. Sci. 44: 1-13.

Herrmann B., Sistiaga M., Larsen R.B., et al. 2013a. Size selectivity of redfish (Sebastes spp.) in the Northeast Atlantic using grid-based selection systems for trawls. Aquat. Living Resour. 26: 109-120.

Herrmann B., Wienbeck H., Moderhak V., et al. 2013b. The influence of twine thickness, twine number and netting orientation on codend selectivity. Fish. Res. 145: 22-36.

Herrmann B., Larsen R.B., Sistiaga M., et al. 2015. Predicting Size Selection of Cod (Gadus morhua) in Square Mesh Codends for Demersal Seining: a Simulation-based Approach. Fish. Res.

Lövgren J., Herrmann B., Feekings J. 2016. Bell-shaped size selection in a bottom trawl: A case study for Nephrops directed fishery with reduced catches of cod. Fish. Res.

Millar R.B. 1992. Estimating the size-selectivity of fishing gear by conditioning on the total catch. J. Amer. Stat. Assoc. 87: 962-968.

Millar R.B. 1993. Incorporation of between-haul variation using bootstrapping and nonparametric estimation of selection curves. Fish. Bull. 91: 564-572.

Millar R.B., Fryer R.J. 1999. Estimating size-selection curves of trawls, traps, gillnets and hooks. Rev. Fish Biol. Fish. 9: 89-116.

Millar R.B., Broadhurst M.K., Macbeth W.G. 2004. Modelling between-haul variability in the size selectivity of trawls. Fish. Res. 67: 171-181.

Norwegian Fisheries Directorate (J-7-2016). 2016. Regulations for fishing practices at sea J-7-2016, Norwegian Fisheries Directorate (, Bergen, Norway. 57 pp. (In Norwegian).

Notti E., Br?i? J., De Carlo F., et al. 2016. Assessment of the relative catch performance of a surrounding net without the purse line as an alternative to a traditional boat seine in small-scale fisheries. Mar. Coast. Fish. 8: 81-91.

Özbilgin H., Erya?ar A.R., Gökçe G., et al. 2015. Size selectivity of hand and machine woven codends and short term commercial loss in the northeastern Mediterranean. Fish. Res. 164: 73-85

Richard S.A. 2008. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45: 218-227.

Sala A., Lucchetti A., Perdichizzi A., et al. 2015. Is square-mesh better selective than larger mesh? A perspective on fisheries management for Mediterranean trawl fisheries. Fish. Res. 161: 182-190.

Sistiaga M., Herrmann B., Grimaldo E., et al. 2010. Assessment of dual selection in grid based selectivity systems. Fish. Res. 105: 187-199.

Sistiaga M., Herrmann B., Grimaldo E., et al. 2015. Effect of lifting the sweeps on bottom trawling catch efficiency: A case study of the Northeast arctic cod (Gadus morhua) trawl fishery. Fish. Res. 167: 164-173.

Sistiaga M., Herrmann B., Grimaldo E., et al. 2016. The effect of sweep bottom contact on the catch efficiency of haddock. Fish. Res. 179: 302-307.

Wienbeck H., Herrmann B., Jordan P.F., et al. 2013. A comparative analysis of legislated and modified Baltic Sea trawl codends for simultaneously improving the size selection of cod (Gadus morhua) and plaice (Pleuronectes platessa). Fish. Res. 150: 28-37.

Wileman D., Ferro R.S.T., Fonteyne R., et al. (eds). 1996. Manual of methods of measuring the selectivity of towed fishing gears. ICES Coop. Res. Rep. No. 215.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support