Scientia Marina, Vol 80, No 2 (2016)

Photo-physiological performance and short-term acclimation of two coexisting macrophytes (Cymodocea nodosa and Caulerpa prolifera) with depth


https://doi.org/10.3989/scimar.04391.07A

Fernando Tuya
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria,, Spain

Séfora Betancor
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria,, Spain

Federico Fabbri
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria,, Spain

Fernando Espino
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria,, Spain

Ricardo Haroun
Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain

Abstract


Marine macrophytes are vertically distributed according to their ability to optimize their photosynthetic performance. We assessed the photo-physiological performance of the seagrass Cymodocea nodosa and the green seaweed Caulerpa prolifera at varying depth at Gran Canaria Island (Canary Islands, eastern Atlantic). The biomass of C. nodosa decreases with depth, while the opposite occurs for C. prolifera. Photochemical responses of both macrophytes were measured in shallow (5 m) and deep (20 m) waters at two times via chlorophyll a fluorescence and internal content of photoprotective pigments and antioxidant activity. We additionally carried out a reciprocal transplant experiment by relocating shallow and deep vegetative fragments of both macrophytes to assess their short-term photo-physiological acclimation. Overall, C. nodosa behaves as a ‘light-plant’, including a larger optimum quantum yield and ETRmax under scenarios of high photosynthetically active radiation and a larger antioxidant activity. In contrast, C. prolifera is a ‘shade-adapted’ plant, showing a larger carotene content, particularly in shallow water. Deep-water C. nodosa and C. prolifera are more photochemically efficient than in shallow water. The alga C. prolifera shows a rapid, short-term acclimation to altered light regimes in terms of photosynthetic efficiency. In conclusion, decreased light regimes favour the photosynthetic performance of the green alga when both species coexist.

Keywords


macroalgae; seagrass; photoacclimation; photo-biology; photoprotection; Atlantic Ocean

Full Text:


HTML PDF XML

References


Barberá C., Tuya F., Boyra A., et al. 2005. Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands: a multiscaled approach. Bot. Mar. 48: 122-126. http://dx.doi.org/10.1515/BOT.2005.021

Bernardeau-Esteller J., Marín-Guirao L., Sandoval-Gil J.M., et al. 2011. Photosynthesis and daily metabolic carbon balance of the invasive Caulerpa racemosa var. cylindracea (Chlorophyta: Caulerpales) along a depth gradient. Sci. Mar. 75: 803-810. http://dx.doi.org/10.3989/scimar.2011.75n4803

Betancor S., Domínguez B., Tuya F., et al. 2015. Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquat. Bot. 121: 16-25. http://dx.doi.org/10.1016/j.aquabot.2014.10.008

Blois M. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. http://dx.doi.org/10.1038/1811199a0

Bradstreet R.B. 1965. The Kjeldahl method for organic Nitrogen. Academic Press, New York, 239 pp. PMCid:PMC2165436

Burkholder J.M., Tomasko D., Touchette B.W. 2007. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350: 46-72. http://dx.doi.org/10.1016/j.jembe.2007.06.024

Cabello-Pasini A., Abdala-Díaz R., Macías-Carranza V., et al. 2015. Effect of irradiance and nitrate levels on the relationship between gross photosynthesis and electron transport rate in the seagrass Cymodocea nodosa. Cienc. Mar. 41: 93-105. http://dx.doi.org/10.7773/cm.v41i2.2499

Ceccherelli G., Cinelli F. 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J. Exp. Mar. Biol. Ecol. 217: 165-177. http://dx.doi.org/10.1016/S0022-0981(97)00050-6

Collado-Vides L. 2002. Morphological plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in relation to growth form in a coral reef lagoon. Bot. Mar. 45: 123-129. http://dx.doi.org/10.1515/BOT.2002.013

Collier C.J., Waycott M., Giraldo Ospina A. 2012. Responses of four Indo-West Pacific seagrass species to shading. Mar. Poll. Bull. 65: 342-354. http://dx.doi.org/10.1016/j.marpolbul.2011.06.017 PMid:21741666

Duarte C.M., Dennison W.C., Orth R.J., et al. 2008. The charisma of coastal ecosystems. Estuar. Coasts 31: 233-238. http://dx.doi.org/10.1007/s12237-008-9038-7

García-Sánchez S., Korbee N., Pérez-Ruzafa I.M., et al. 2012. Physiological response and photoacclimation capacity of Cau lerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). Mar. Environ. Res. 79: 37-47. http://dx.doi.org/10.1016/j.marenvres.2012.05.001 PMid:22658780

Gardner A., Tuya F., Lavery P.S., et al. 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Mar. Biol. Ecol. 439: 143–151. http://dx.doi.org/10.1016/j.jembe.2012.11.009

Grzymski J., Johnsen G., Sakshaug E. 1997. The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J. Phycol. 33: 408-414. http://dx.doi.org/10.1111/j.0022-3646.1997.00408.x

Häder D.P., Porst M., Herrmann H., et al. 1997. Photosynthesis of Mediterranean green alga Caulerpa prolifera measured in the field under solar irradiation. J. Photoch. Photobio. B 37: 66-73. http://dx.doi.org/10.1016/S1011-1344(96)07338-1

Hanelt D. 1998. The capability for dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol. 131: 361-369. http://dx.doi.org/10.1007/s002270050329

Jassby A., Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540-547. http://dx.doi.org/10.4319/lo.1976.21.4.0540

Lapointe B.E., Barile P.J., Littler M.M., et al. 2005. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4: 1106-1122. http://dx.doi.org/10.1016/j.hal.2005.06.002

Lloret J., Marin A., Marin-Guirao L., et al. 2005. Changes in macrophytes distribution in a hypersaline coastal lagoon associated with the development of intensively irrigated agriculture. Ocean. Coast. Manage. 48: 828-842. http://dx.doi.org/10.1016/j.ocecoaman.2005.07.002

Lüning K. 1990. Seaweeds: their environment, biogeography, and ecophysiology. Wiley-Interscience, New York, NY. PMCid:PMC1971603

Malta E.J., Ferreira D.G., Vergara J.J., et al. 2005. Nitrogen load and irradiance affect morphology, photosynthesis and growth of Caulerpa prolifera (Bryopsidales, Chlorophyta). Mar. Ecol. Prog. Ser. 298: 101-114. http://dx.doi.org/10.3354/meps298101

Matsubara S., Krause G.H., Aranda J., et al. 2009. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct. Plant Biol. 36: 20-36. http://dx.doi.org/10.1071/FP08214

Maxwell K., Johnson G. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51: 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659 PMid:10938857

Murphy J., Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27: 31-36. http://dx.doi.org/10.1016/S0003-2670(00)88444-5

Olesen B., Enríquez S., Duarte C.M., et al. 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser. 236: 89-97. http://dx.doi.org/10.3354/meps236089

Parsons T.R., Strickland J.D.H. 1963. Discussion of spectrophometric determination of marine-plant pigments, with revised equations for ascertaining chlorophyll-a and carotenois. J. Mar. Res. 21: 105-156.

Platt T., Gallegos I. 1980. Modelling primary production. In: Falkowski P.G. (ed.), Primary productivity in the sea. Plenum, pp. 339-351. http://dx.doi.org/10.1007/978-1-4684-3890-1_19

Raniello R., Lorenti M., Brunet C., et al. 2006. Photoacclimation of the invasive alga Caulerpa racemosa var. cylindracea to depth and daylight patterns and a putative new role for siphonoxanthin. Mar. Ecol. 27: 20-30. http://dx.doi.org/10.1111/j.1439-0485.2006.00080.x

Silva J., Barrote J., Costa M.M., et al. 2013. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS ONE 8(11): e81058. http://dx.doi.org/10.1371/journal.pone.0081058 PMid:24312260 PMCid:PMC3842938

Terrados J., Ros J.D. 1992. Growth and primary production of Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: The Mar Menor (SE Spain). Aquat. Bot. 43: 63-74. http://dx.doi.org/10.1016/0304-3770(92)90014-A

Tuya F., Martín J.A., Luque A. 2006. Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, eastern Atlantic). Cien. Mar. 32: 695-704.

Tuya F., Hernández-Zerpa H., Espino F., et al. 2013a. Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (Eastern Atlantic): interactions with the green alga Caulerpa prolifera. Aquat. Bot. 105: 1-6. http://dx.doi.org/10.1016/j.aquabot.2012.10.006

Tuya F., Viera-Rodríguez M.A., Guedes R., et al. 2013b. Seagrass responses to nutrient enrichment depend on clonal integration, but not flow-on effects on associated biota. Mar. Ecol. Prog. Ser. 490: 23-35. http://dx.doi.org/10.3354/meps10448

Tuya F., Ribeiro-Leite L., Arto-Cuesta N., et al. 2014. Decadal changes in the structure of Cymodocea nodosa seagrass meadows: Natural vs. human influences. Estuar. Coast. Shelf Sci. 137: 41-49. http://dx.doi.org/10.1016/j.ecss.2013.11.026

Tuya F., Betancor S., Viera-Rodríguez M.A., et al. 2015. Effect of chronic versus pulse perturbations on a marine ecosystem: integration of functional responses across organization levels. Ecosystems 18: 1455-1471. http://dx.doi.org/10.1007/s10021-015-9911-8

Underwood A.J. 1997. Experiments in Ecology: their logical design and interpretation using Analysis of Variance. Cambridge Univ. Press., Cambridge, UK.

Walkley A., Black J.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci. 37: 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es