Scientia Marina, Vol 80, No 2 (2016)

Modulation of gregarious settlement of the stalked barnacle, Pollicipes pollicipes: a laboratory study


https://doi.org/10.3989/scimar.04342.01A

Sofia C. Franco
School of Marine Science and Technology, Newcastle University - Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora , United Kingdom

Nick Aldred
School of Marine Science and Technology, Newcastle University , United Kingdom

Teresa Cruz
Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora - MARE–Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora , Portugal

Anthony S. Clare
School of Marine Science and Technology, Newcastle University , United Kingdom

Abstract


Although recruitment patterns of Pollicipes pollicipes (Crustacea: Scalpelliformes) in the wild have been investigated, no studies have yet focused on the factors that affect settlement. In the present paper, settlement of P. pollicipes on conspecifics (gregarious settlement) was investigated in the laboratory as a function of environmental conditions (hydrodynamics, temperature, light and salinity), larval age and batch. This study aimed to understand how these factors modulate settlement in the laboratory and elucidate how they might impact recruitment patterns in nature. Maximum attachment on adults was 30-35%, with a one-week metamorphosis rate of 70-80%. Batch differences affected both attachment and metamorphosis. Attachment rate was higher at natural salinity (30-40 psu), with lower salinity (20 psu) decreasing metamorphosis rate. Cyprid attachment was stimulated by light conditions and circulating water. This might relate to a preference for positioning high in the water column in nature, but also to increased cyprid-surface contact in conditions of circulating water. Older cyprids (3 or 6 days) showed higher attachment than un-aged larvae, though fewer 6-day-old larvae metamorphosed. Temperature did not affect attachment rate, but the metamorphosis rate decreased at 14°C (compared with 17 or 20°C), implying that differences in temperature during the breeding season can affect how quickly cyprids metamorphose to the juvenile. Cyprids survived for prolonged periods ( ≥ 20 days; 40% survival), likely due to efficient energy saving by intercalating long periods of inactivity with fast bursts of activity upon stimulation.

Keywords


stalked barnacles; larva; settlement; attachment; metamorphosis; cyprids; aquaculture

Full Text:


HTML PDF XML

References


Aldred N., Clare A.S. 2009. Mechanisms and principles underlying temporary adhesion, surface exploration and settlement site selection by barnacle cyprids: A short review. In: Gorb S.N. (ed.) Functional surfaces in biology. Springer. Netherlands, pp. 43-65. http://dx.doi.org/10.1007/978-1-4020-6695-5_3

Aldred N., Gohad N.V., Petrone L., et al. 2013. Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive. J. Exp. Biol. 216: 1969-1972. http://dx.doi.org/10.1242/jeb.084913 PMid:23430996

Anil A.C., Desai D., Khandeparker L., 2001. Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia, Thoracica): significance of food concentration, temperature and nucleic acids. J. Exp. Mar. Biol. Ecol. 263: 125-141. http://dx.doi.org/10.1016/S0022-0981(01)00280-5

Barnes M.G. 1996. Pedunculate cirripedes of the genus Pollicipes. Oceanogr. Mar. Biol. 34: 303-394.

Batham E. 1946. Pollicipes spinosus Quoy and Gamard, II: embryonic and larval development. Trans. Roy. Soc. New Zeal. 75: 405-418.

Bertness M.D., Gaines S.D., Wahle R.A. 1996. Wind-driven settlement patterns in the acorn barnacle Semibalanus balanoides. Mar. Ecol. Progr. Ser. 137: 103-110. http://dx.doi.org/10.3354/meps137103

Bischof B., Mariano A.J., Ryan E.H. 2003. The Portugal current system. Surface Currents in the Atlantic Ocean. http://oceancurrents.rsmas.miami.edu/atlantic/portugal.html.

Borja A., Muxika I., Bald J. 2006. Protection of the goose barnacle Pollicipes pollicipes, Gmelin, 1790 population: the Gaztelugatxe Marine Reserve (Basque Country, northern Spain). Sci. Mar. 70: 235-242. http://dx.doi.org/10.3989/scimar.2006.70n2235

Clare A.S. 2011. Towards the characterization of the chemical cue to barnacle gregariousness. Chemical communications in crustaceans. Springer, New York, pp. 431-455.

Clare A.S., Thomas R.F., Rittschof D. 1995. Evidence of the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J. Exp. Mar. Biol. 198: 655-664.

Coelho M.R. 1990. Descrição dos estados larvares do perceve (Pollicipes cornucopia). Faro, Portugal: Universidade do Algarve, pp. 39.

Coelho M.R. 1991. A field study on Pollicipes pollicipes settlement. Wales, UK: University of Wales, pp. 29.

Crisp D.J. 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. J. Exp. Mar. Biol. 32: 569-590.

Crisp D.J., Barnes H. 1954. The orientation and distribution of barnacles at settlement with particular reference to surface contour. J. Anim. Ecol. 23: 142-162. http://dx.doi.org/10.2307/1664

Crisp D.J., Ritz D.A. 1973. Responses of cirripede larvae to light. I. Experiments with white light. Mar. Biol. 23: 327-335. http://dx.doi.org/10.1007/BF00389340

Cruz T., Araújo J. 1999. Reproductive patterns of Pollicipes pollicipes (Cirripedia: Scalpellomorpha) on the Southwestern coast of Portugal. J. Crust. Biol. 19: 260-267. http://dx.doi.org/10.2307/1549232

Cruz T., Castro J.J., Hawkins S.J. 2010. Recruitment, growth and population size structure of Pollicipes pollicipes in SW Portugal. J. Exp. Biol. 392: 200-209. http://dx.doi.org/10.1016/j.jembe.2010.04.020

Daniel A. 1957. Illumination and its effect on the settlement of barnacle cyprids. Proc. Zool. Soc. Lon. 129: 305-313. http://dx.doi.org/10.1111/j.1096-3642.1957.tb00295.x

Di Fino A., Petrone L., Aldred N., et al. 2014. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Biofouling 30: 143-152. http://dx.doi.org/10.1080/08927014.2013.852541 PMid:24313326

Dineen J.F., Hines A.H. 1992. Interactive effects of salinity and adult extract upon settlement of the estuarine barnacle Balanus improvisus (Darwin, 1854). J. Exp. Mar. Biol. Ecol. 156: 239-252. http://dx.doi.org/10.1016/0022-0981(92)90249-A

Dineen J.F., Hines A.H. 1994a. Larval settlement of the polyhaline barnacle Balanus eburneus (Gould): cue interactions and comparisons with two estuarine congeners. J. Exp. Mar. Biol. Ecol. 179: 223-234. http://dx.doi.org/10.1016/0022-0981(94)90116-3

Dineen J.F., Hines A.H. 1994b. Effects of salinity and adult extract on settlement of the oligohaline barnacle Balanus subalbidus. Mar. Biol. 119: 423-430. http://dx.doi.org/10.1007/BF00347539

Dreanno C., Kirby R.R., Clare A.S. 2006. Smelly feet are not always a bad thing: The relationship between cyprid footprint protein and the barnacle settlement pheromone. Biol. Lett. 2: 423-425. http://dx.doi.org/10.1098/rsbl.2006.0503 PMid:17148421 PMCid:PMC1686195

Fiuza A.F., Macedo M.E., Guerreiro M.R. 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta. 5: 31-40.

Holland D.L., Walker G. 1975. The biochemical composition of the cypris larva of the barnacle Balanus balanoides L. J. Conseil 36: 162-165. http://dx.doi.org/10.1093/icesjms/36.2.162

Holm E.R. 2012. Barnacles and biofouling. Int. Comp. Biol. 52: 348-355. http://dx.doi.org/10.1093/icb/ics042 PMid:22508866

Holm E.R., McClary M., Rittschof D. 2000. Variation in attachment of the barnacle Balanus amphitrite: sensation or something else? Mar. Ecol. Progr. Ser. 202: 153-162. http://dx.doi.org/10.3354/meps202153

Instituto Hidrográfico. 2015. Instituto Hidrográfico (accessed on 01/12/2015). http://www.hidrografico.pt

Keough M.J., Raimondi P.T. 1996. Responses of settling invertebrate larvae to bio-organic films: effects of large-scale variation in films. J. Exp. Mar. Biol. Ecol. 207: 59-78. http://dx.doi.org/10.1016/S0022-0981(96)02632-9

Knight-Jones E.W. 1953. Laboratory experiments on gregariousness during setting in Balanus balanoides and other barnacles. J. Exp. Biol. 30: 584-598.

Kon-Ya K., Miki W. 1994. Effects of environmental-factors on larval settlement of the barnacle Balanus amphitrite reared in the laboratory. Fish. Sci. 60: 563-565.

Krug P.J. 2006. Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Prog. Mol. Subcell Biol. 42: 1-53. http://dx.doi.org/10.1007/3-540-30016-3_1

Kugele M., Yule A.B. 1996. The larval morphology of Pollicipes pollicipes (Gmelin 1970) (Cirripedia: Lepadomorpha) with notes on cyprid settlement. Sci. Mar. 60: 469-480.

Le Tourneux F., Bourget E. 1988. Importance of physical and biological settlement cues used at different spatial scales by the larvae of Semibalanus balanoides. Mar. Biol. 97: 57-66. http://dx.doi.org/10.1007/BF00391245

Lucas M.I., Walker G., Holland D.L., et al. 1979. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55: 221-229. http://dx.doi.org/10.1007/BF00396822

Maki J.S., Rittschof D., Costlow J.D., et al. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97: 199-206. http://dx.doi.org/10.1007/BF00391303

Marechal J.P., Hellio C., Sebire M., et al. 2004. Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20: 211-217. http://dx.doi.org/10.1080/08927010400011674 PMid:15621642

Marechal J.P., Matsumura K., Conlan S., et al. 2012. Competence and discrimination during cyprid settlement in Amphibalanus amphitrite. Int. Biodeter. Biodegrad. 72: 59-66. http://dx.doi.org/10.1016/j.ibiod.2012.05.007

Matsumura K., Nagano M., Kato-Yoshinaga Y., et al. 1998. Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proc. Roy. Soc. B 265: 1825-1830. http://dx.doi.org/10.1098/rspb.1998.0508 PMid:9802238 PMCid:PMC1689374

Matsumura K., Hills J.M., Thomason P.O., et al. 2000. Discrimination at settlement in barnacles: Laboratory and field experiments on settlement behaviour in response to settlement-inducing protein complexes. Biofouling 16: 181-190. http://dx.doi.org/10.1080/08927010009378443

Minchinton T.E., Scheibling R.E. 1993. Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Mar Ecol. Prog. Ser. 95: 233-244. http://dx.doi.org/10.3354/meps095233

Molares J. 1994. Estudio del ciclo biologico del percebe (Pollicipes cornucopia Leach) de las costas de Galicia. Xunta de Galicia, Santiago, Spain, 62 pp.

Molares J., Freire J. 2003. Development and perspectives for community-based management of the goose barnacle (Pollicipes pollicipes) fisheries in Galicia (NW Spain). Fish. Res. 65: 485-492. http://dx.doi.org/10.1016/j.fishres.2003.09.034

Molares J., Tilves F., Pascual C. 1994. Larval development of the pedunculate barnacle Pollicipes cornucopia (Cirripedia: Scalpellomorpha) reared in the laboratory. Mar. Biol. 120: 261-264. http://dx.doi.org/10.1007/BF00349686

Molares J., Otero E.V., Rivero G.M. 2002. Ecologia larvaria del percebe Pollicipes pollicipes: patrones estacionales, mecanismos de control y comportamiento, desde la eclosion hasta la fijación. Informe Final del Proyecto de Investigación. Conselleria de Pesca e Asuntos Maritimos (Centro de Investigacions Marinas), Pontevedra, Spain, 41 pp.

Mullineaux L.S., Butman C.A. 1991. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 110: 93-103. http://dx.doi.org/10.1007/BF01313096

Nott J.A., Foster B.A. 1969. On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Philos. T. Roy. Soc. B 256: 115-134. http://dx.doi.org/10.1098/rstb.1969.0038

Pavón C. 2003. Biologia y variables poblacionales del percebe, Pollicipes pollicipes (Gmelin, 1790) en Asturias. Oviedo, Spain: Universidad de Oviedo, 151 pp.

Pawlik J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar. Biol. Ann. Rev. 30: 273-335.

Pechenik J.A., Rittschof D., Schmidt A.R. 1993. Influence of delayed metamorphosis on survival and growth of juvenile barnacles Balanus amphitrite. Mar. Biol. 115: 287-294. http://dx.doi.org/10.1007/BF00346346

Rittschof D., Branscomb E.S., Costlow J.D. 1984. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 82: 131-146. http://dx.doi.org/10.1016/0022-0981(84)90099-6

Satuito C.G., Shimizu K., Natoyama K., et al. 1996. Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar. Biol. 127: 125-130. http://dx.doi.org/10.1007/BF00993652

Shanks A.L. 1986. Tidal periodicity in the daily settlement of intertidal barnacle larvae and hypothesized mechanism for the crossshelf transport of cyprids. Biol. Bull. 170: 429-440. http://dx.doi.org/10.2307/1541852

Sousa A., Jacinto D., Penteado N., et al. 2013. Patterns of distribution and abundance of the stalked barnacle (Pollicipes pollicipes) in the central and southwest coast of continental Portugal. J. Sea Res. 83: 187-194. http://dx.doi.org/10.1016/j.seares.2013.04.005

Talley L.D. 2002. Salinity patterns in the ocean. In: MacCracken M.C., Perry J.S. (eds) The Earth system: physical and chemical dimensions of global environmental change. John Wiley and Sons Ltd., Chichester, pp. 629-640.

Thiyagarajan V., Harder T., Qian P. 2002. Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J. Exp. Mar. Biol. Ecol. 272: 65-74. http://dx.doi.org/10.1016/S0022-0981(02)00182-X

Thiyagarajan V., Harder T., Qian P. 2003. Combined effects of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. J. Exp. Mar. Biol. Ecol. 287: 223-236. http://dx.doi.org/10.1016/S0022-0981(02)00570-1

Toonen R.J., Pawlik J.R. 1994. Foundations of gregariousness. Nature 370: 511-512. http://dx.doi.org/10.1038/370511a0

Walker G. 1971. A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar. Biol. 9: 205-212. http://dx.doi.org/10.1007/BF00351380

West T.L., Costlow J.D. 2005. Determinants of the larval molting pattern of the crustacean Balanus eburneus Gould (Cirripedia: Thoracica). J. Exp. Zool. 248: 33-44. http://dx.doi.org/10.1002/jez.1402480106

Wieczorek S.K., Todd C.D. 1998. Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial cues. Biofouling 12: 81-118. http://dx.doi.org/10.1080/08927019809378348




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es