Scientia Marina, Vol 80, No 1 (2016)

Potential food sources of Glycymeris nummaria (Mollusca: Bivalvia) during the annual cycle indicated by fatty acid analysis

Mirjana Najdek
Institute “Ruđer Bošković”, Centre for Marine Research, Croatia

Daria Ezgeta-Balić
Institute of Oceanography and Fisheries, Croatia

Maria Blažina
Institute “Ruđer Bošković”, Centre for Marine Research, Croatia

Marija Crnčević
Public Institution for the Management of Protected Natural Values in the Dubrovnik-Neretva County, Croatia

Melita Peharda
Institute of Oceanography and Fisheries, Croatia


Seasonal changes of food sources were investigated by analysing the fatty acid profiles of digestive gland and muscle tissues of the naturally occurring clams Glycymeris nummaria in Mali Ston Bay, Croatia. Total lipids in the digestive gland and the adductor muscle showed parallel changes, with a maximum after the main spawning event in September. In the digestive gland saturated fatty acids were highly dominant (up to 82%), indicating detritus as the main food source for this species. This type of food prevailed during the autumn/winter period, in contrast to the spring/summer period when detritus was enriched with phyto- and, to a lesser extent, zooplankton. Fatty acid composition of muscles indicated highly efficient utilization of ingested food through significant retention of polyunsaturated fatty acid from the clams’ diet during the entire period investigated.


feeding ecology; bivalve; Glycymerididae; Adriatic Sea; Mali Ston

Full Text:



Allan E.L., Ambrose S.T., Richoux N.B., et al. 2010. Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: Stable isotope and fatty acid signatures. Est. Coast. Shelf Sci. 87: 463-471.

Beninger P.G., Lucas A. 1984. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams and Reeve). J. Exp. Mar. Biol. Ecol. 79: 19-37.

Bergé J.P., Barnathan G. 2005. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Engin./Biotechnol. 96: 49-125.

Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 910-917. PMid:13671378

Buseli? I., Peharda M., Reynolds D.J., et al. 2015. Glycymeris bimaculata (Poli, 1795) – a new sclerochronological archive for the Mediterranean? J. Sea Res. 95: 139-148.

Comeau L.A., Sonier R., Lanteigne L., et al. 2010. A novel approach to measuring chlorophyll uptake by cultivated oysters. Aquac. Eng. 43: 71-77.

Calic M., Cari? M., Krsinic F., et al. 2013. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environ. Monit. Assess. 185: 7543-7563. PMid:23417779

Crncevic M., Peharda M., Ezgeta-Bali? D., et al. 2013. Reproductive cycle of Glycymeris nummaria (Linnaeus, 1758) (Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia. Sci. Mar. 77: 293-300.

Dalsgaard J., John M.S., Kattner G., et al. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 229-352.

Davenport J., Ezgeta-Bali? D., Peharda M., et al. 2011. Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Est. Coast. Shelf. Sci. 92: 246-254.

Delaporte M., Soudant P., Moal J., et al. 2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Physiol. A. 140(4): 460-470. PMid:15936706

De Moreno J.E.A., Moreno V.J., Brenner R.R. 1976. Lipid metabolism of the yellowclam, Mesodesma mactroides: I. Composition of the lipids. Lipids 11: 334-340. PMid:1263776

Deudero S., Cabanellas M., Blanco A., et al. 2009. Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. J. Exp. Mar. Biol. Ecol. 368: 181-188.

Dupcic-Radic I., Caric M., Najdek M., et al. 2014. Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae) from the Mali Ston Bay, Adriatic Sea. Med. Mar. Sci. 15(3): 520-531.

Ezgeta-Balic D., Najdek M., Peharda M., et al. 2012. Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334-337: 89-100.

Ezgeta-Bali? D., Lojen S., Dolenec T., et al. 2014. Seasonal differences of stable isotope composition and lipid content in four bivalve species from the Adriatic Sea. Mar. Biol. Res. 10(6): 625-634.

Freites L., Labarta U., Fernandez-Reiriz M.J. 2002. Evolution of fatty acid profiles of subtidal and rocky shore mussel seed (Mytilus galloprovincialis, Lmk.). Influence of environmental parameters. J. Exp. Mar. Biol. Ecol. 268: 185-204.

Galap C., Leboulenger F., Grillot J.-P. 1997. Seasonal variation in biochemical constituents during the reproductive cycle of the female dog cockle Glycymeris glycymeris. Mar. Biol. 129: 625-634.

Galap C., Netchitaılo P., Leboulenger F., et al. 1999. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp. Biochem. Physiol., A. 122: 241-254.

Gofas S., Moreno D., Salas C. 2011. Moluscos Marinos de Andalucía. Vol. 2. Servicio de Publicaciones, Universidad de Málaga, 343-798 pp.

Hurtado M.A., Racotta I.S., Arcos F., et al. 2012. Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp. Biochem. Physiol. B. 163: 172-183. PMid:22613818

Legac M., Hrs-Brenko M. 1999. A review of bivalve species in the eastern Adriatic Sea. III. Pteriomorpha (Glycymerididae). Nat. Croat. 8: 9-25.

Lehane C., Davenport J. 2002. Ingestion of mesozooplankton by three species of bivalve, Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. J. Mar. Biol. Ass. U.K. 82: 615-619.

Lehane C., Davenport J. 2004. Ingestion of bivalve larvae by Mytilus edulis: experimental and field demonstration of larviphagy in farmed blue mussels. Mar. Biol. 145: 101-107.

MacDonald B.A., Thompson R.J. 1986. Influence of temperature and food availability on the ecological energetic of the giant scallop Placopecten magellanicus III. Physiological ecology, the gametogenetic cycle and scope for growth. Mar. Biol. 93: 37-48.

Mayzaud P., Chanut J.P., Ackman R.G. 1989. Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser. 56: 189-204.

Morrison W.R., Smith L.M. 1964. Preparation of fatty acid methylesters and dimethylacetals from lipids with boron fluoride– methanol. J. Lipid Res. 5: 600-608. PMid:14221106

Najdek M., Degobbis D., Miokovic D., et al. 2002. Fatty acid and phytoplankton composition of different types of mucilaginous aggregates in the northern Adriatic. J. Plankton Res. 24: 429-441.

Najdek M., Blazina M., Ezgeta-Balic D., et al. 2013. Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle. Mar. Biol. 160: 921-930.

Nerot C., Lorrain A., Grall J., et al. 2012. Stable isotope variation in benthic filter feeders across a large depth gradient on the continental shelf. Est. Coast. Shelf. Sci. 96: 228-235.

Palacios E., Racotta I.S., Kraffe E., et al. 2005. Lipid composition of the giant lion's pawscallop (Nodipecten subnodosus) in relation to gametogenesis I. Fatty acids. Aquaculture 250: 270-282.

Paulet Y.-M., Lorrain A., Richard J., et al. 2006. Experimental shift in diet ?13C: A potential tool for ecophysiological studies in marine bivalves. Org. Geochem. 37: 1359-1370.

Peharda M., Ezgeta-Balic D., Vrgoc N., et al. 2010. Description of bivalve community structure in the Croatian part of the Adriatic Sea – hydraulic dredge survey. Acta Adriat. 51: 144-158.

Peharda M., Crncevic M., Buseli? I., et al. 2012a. Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia. J. Shellfish Res. 31: 947-950.

Peharda M., Ezgeta-Balic D., Davenport J., et al. 2012b. Differential ingestion of zooplankton by four species of bivalves (Mollusca) in Mali Ston Bay, Croatia. Mar. Biol. 159(4): 881-895.

Pernet F., Tremblay R., Comeau L., et al. 2007. Temperature adaptation in two bivalve species from different thermal habitat: energetic and remodeling of membrane lipids. J. Exp. Biol. 210: 2999-3014. PMid:17704075

Perez V., Olivier F., Tremblay R., et al. 2013. Trophic resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) determined by stable isotopes and fatty acids. Aquat. Living Resour. 26(03): 229-239.

Pirini M., Manuzzi M.P, Pagliarani A., et al. 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. B. 147: 616-626. PMid:17482494

Poppe G.T., Goto Y. 2000. European Seashells. Volume II. (Scaphopoda, Bivalvia, Cephalopoda). ConchBooks, Hackenheim, 221 pp.

Rinaldi E. 2002. Glycymeris (Glycymeris) insubrica (Brocchi, 1874) nelle acque antisanti la costa Romagnola (Mollusca, Bivalvia, Glycymerididae). Quad. Studi Nat. Romagna 16: 15-20.

Royer C., Thébault J., Chauvaud L., et al. 2013. Structural analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373: 123-132.

Savina M., Pouvreau S. 2004. A comparative ecophysiological study of two infaunal filter-feeding bivalves: Paphia rhomboides and Glycymeris glycymeris. Aquaculture 239: 289-306.

Schöne B.R., Zhang Z., Radermacher P., et al. 2011. Sr/Ca and Mg/ Ca ratios of ontogenetically old, long-lived bivalve shells Arctica islandica) and their function as palaeotemperature proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302: 52-64.

Shin P.K.S., Yip K.M., Xu W.Z., et al. 2008. Fatty acids as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J. Exp. Mar. Biol. Ecol. 357: 75-84.

Soudant P., van Ryckeghem K., Marty Y., et al. 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. B. 123: 209-222.

Trider D.J., Castell J.D. 1980. Influence of neutral lipid on seasonal variation of total lipid in oysters, Crassostrea virginica. Proc. Natl. Shellfish Ass. 70: 112-118.

Ventrella V., Pirini M., Pagliarani A., et al. 2008. Effect of temporal and geographic factors on fatty acid composition of M. galloprovincialis from the Adriatic Sea. Comp. Biochem. Physiol. B. 149: 241-250. PMid:17977043

Zhukova N.V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids inmollusks. Comp. Biochem. Physiol. B. 100: 801-804 .

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support