Scientia Marina, Vol 79, No 4 (2015)

Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary


https://doi.org/10.3989/scimar.04218.31A

Barbara Maichak de Carvalho
Programa de Pós Graduação em Zoologia, Departamento de Zoologia - UFPR, Brazil

André Martins Vaz-dos-Santos
UFPR, Departamento de Biodiversidade, Laboratório de Esclerocronologia, Brazil

Henry Louis Spach
Programa de Pós Graduação de Sistema Costeiro e Oceânicos, UFPR, Brazil

Alejandra Vanina Volpedo
Instituto de Investigaciones en Producción Animal (INPA-CONICET), Argentina

Abstract


In order to characterize the ontogeny of Anchoa tricolor, the morphology and morphometry of sagitta otoliths were described. A total of 397 pairs of sagitta otoliths of A. tricolor (20 to 85 mm) were measured and analysed by means of digital images. Morphological description was done in terms of shape and features. The Huxley model was fitted to otolith length against total length (TL) and weight (TW), and residual analyses were done in order to detect the polyphasic growth. Six shape indices were calculated (otolith height/otolith length and otolith length/total length aspect ratios, rectangularity, roundness, relative sulcus surface and rostrum index) and after size effect removal, they were analysed in terms of TL. The results of these analyses allowed three distinct growth phases to be identified: (1) up to 40 mm TL and related to low swimming ability; (2) between 41 and 60-70 mm TL, when fish displacements increase but the first maturation has not yet occurred; and (3) after 71 mm TL, when fish become adults. Landmarks and semi-landmarks were used to analyse relative warps during the otolith development. The MANOVA analysis between the centroid size and class intervals showed significant differences in the interaction of all classes except between 71-80 and 81-90 mm.

Keywords


shape index; geometric; morphometry; Engraulidae; Brazil; description

Full Text:


HTML PDF XML

References


Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth.

Araújo F.G., Silva M.A., Azevedo M.C.C., et al. 2008. Spawning season, recruitment and early life distribution of Anchoa tricolor (Spix and Agassiz, 1829) in a tropical bay in southeastern Brazil. Braz. J. Biol. 684: 823-829. http://dx.doi.org/10.1590/S1519-69842008000400018

Assis C.A. 2005. The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Sci. Mar. 69: 259-273. http://dx.doi.org/10.3989/scimar.2005.69n2259

Avigliano E., Volpedo A.V. 2013. Use of otolith strontium: calcium ratio as indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment. Mar. Freshwater. Res. 64: 1-6. http://dx.doi.org/10.1071/MF12165

Avigliano E., Martinez-Ria-os F., Volpedo A.V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish. Res. 149: 55-60. http://dx.doi.org/10.1016/j.fishres.2013.09.013

Baylac M. 2008. Rmorph: a R geometric and multivariate morphometrics library. Available from the author: baylac@mnhn.fr

Bellido J.M., Pierce G.J., Romero J.L., et al. 2000. Use of frequency analysis methods to estimate growth of anchovy (Engraulis encrasicolus L. 1758) in the Gulf of Cadiz (SW Spain). Fish. Res.48: 107-115. http://dx.doi.org/10.1016/S0165-7836(00)00183-1

Bervian G., Fontoura N.F., Haimovici M. 2006. Statistical model of variable allometric growth: otolith growth in Micropogonias furnieri (Actinopterygii, Sciaenidae). J. Fish. Biol. 68: 196-208. http://dx.doi.org/10.1111/j.0022-1112.2006.00890.x

Bornatowski H., Braga R.R., Abilhôa V., et al. 2014. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil. J. Fish. Biol. 85: 246-263. http://dx.doi.org/10.1111/jfb.12417 PMid:24919949

Bugoni L., Vooren C.M. 2004. Feeding ecology of the Common tern Sterna hirundo in a wintering area in southern Brazil. Ibis.146: 438-453. http://dx.doi.org/10.1111/j.1474-919X.2004.00277.x

Cadrin S.X., Friedland K.D. 1999. The utility of image processing techniques for morphometric analysis and stock identication. Fish. Res. 43:129-139. http://dx.doi.org/10.1016/S0165-7836(99)00070-3

Campana S.E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59: 197-242. http://dx.doi.org/10.1111/j.1095-8649.2001.tb00127.x

Campana S.E., Casselman J.M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50: 1-22. http://dx.doi.org/10.1139/f93-123

Carvalho F.M., Castello J.P. 2013. Argentine anchovy (Engraulis anchoita) stock identification and incipient exploitation in southern Brazil. Lat. Am. J. Aquat. Res. 41: 820-827. http://dx.doi.org/10.3856/vol41-issue5-fulltext-2

Carvalho B.M., Corrêa M.F.M. 2014. Morphometry of the sagitta otolith from Atherinella brasiliensis (Quoy and Gaimard, 1824) (Actinopterygii - Atherinopsidae), at the coast of Paraná. Rev. Trop. Oceanogr. 42: 54-59.

Casselman J.M. 1990. Growth and relative size of calcified structures of fish. T. Am. Fish. Soc., 119(4): 673-688. http://dx.doi.org/10.1577/1548-8659(1990)119<0673:GARSOC>2.3.CO;2

Contente R.F., Stefanoni M.F., Spach H. L. 2011. Fish assemblage structure in an estuary of the Atlantic Forest biodiversity hotspot (southern Brazil). Ichthyol Res. 58: 38-50. http://dx.doi.org/10.1007/s10228-010-0192-0

De La Cruz-Agu.ero J., García-Rodríguez F. J., De La Cruz-Agu.ero G., et al. 2012. Identification of gerreid species (Actinopterygii: Perciformes: Gerreidae) from the pacific coast of Mexico based on sagitta otolith morphology analysis. Acta Ichthyol. Piscat. 42(4): 297-306. http://dx.doi.org/10.3750/AIP2012.42.4.03

Elsdon T.S., Wells B.K., Campana S.E., et al. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Ann. Rev. 46: 297-330. http://dx.doi.org/10.1201/9781420065756.ch7

Franco T.P., Araújo C.E.O., Araújo F.G. 2013. Length–weight relationships for 25 fish species from three coastal lagoons in Southeastern Brazil. J. Appl. Ichthyol. 30(1): 248-250. http://dx.doi.org/10.1111/jai.12271

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. App. Ichthyol. 22(4): 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x

Furlani D., Gales R., Pemberton D. 2007. Otoliths of common Australian temperate fish: a photographic guide. Collingwood: CSIRO Publishing, 32 pp.

Gonzalez-Naya M.J., Tombari A., Volpedo A.V., et al. 2012. Size related changes in sagitta otoliths of Australoheros facetus (Pisces; Cichlidae) from South America. J. Appl. Ichthyol. 28: 752-755. http://dx.doi.org/10.1111/j.1439-0426.2012.02006.x

Hare J.A., Cowen R.K. 1994. Ontogeny and otolith microstructure of bluefish Pomatomus saltatrix (Pisces: Pomatomidae). Mar. Biol. 118(4): 541-550. http://dx.doi.org/10.1007/BF00347500

Hofstaetter M., Godefroid R.S., Sobolewski M., et al. 2004. Estágios iniciais do ciclo de vida de Anchoa tricolor (Agassiz, 1829) (Teleostei: Engraulidae). Rev. Uniandrade. 5: 81-94.

Hunt J.J. 1992. Morphological characteristics of otoliths for selected fish in the Northwest Atlantic. J. Northwest Atl. Fish. Sci. 13: 63-75. http://dx.doi.org/10.2960/J.v13.a5

Huxley J.S. 1993. Problems of relative growth; with a new introduction. Baltimore, The John Hopkins University Press.

Hüssy K. 2008. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Biol. Ecol. 364(1): 35-41. http://dx.doi.org/10.1016/j.jembe.2008.06.026

IUCN. 2014. http://www.iucnredlist.org/

Joh M., Matsuda T., Miyazono, A. 2015. Common otolith microstructure related to key early life-history events in flatfishes identified in the larvae and juveniles of cresthead flounder Pseudopleuronectes schrenki. J. Fish Biol. 86: 448-462. http://dx.doi.org/10.1111/jfb.12562 PMid:25546480

Lana P.C., Marone E., Lopes R.M., et al. 2001. The Subtropical Estuarine Complex of Paranaguá Bay, Brazil. In: Seeliger U. Kjerfve B. (eds), Coastal Marine Ecosystems of Latin America, Series Ecological Studies 144: 131-145. Berlin, Springer-Verlag.

Lemos P.H.B., Corrêa M.F.M., Pinheiro P.C. 1995. Catálogo de otólitos de Engraulidae (Clupeiformes-Osteichthyes) do litoral do Estado do Paraná, Brasil. Braz. Arch. Biol. Tech. 38(3): 731-745.

Leguá J., Plaza G., Pérez D., et al. 2013. Otolith shape analysis as a tool for stock identification of the southern blue whiting, Micromesistius australis. Lat. Am. J. Aquat. Res. 41: 479-489.

Libungan L.A., Óskarsson G.J., Slotte A., et al. 2015. Otolith shape: a population marker for Atlantic herring Clupea harengus. J. Fish. Biol. 86: 1377-1395. http://dx.doi.org/10.1111/jfb.12647 PMid:25846860

Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fish. 33: 405-410. http://dx.doi.org/10.1007/BF00010955

Lombarte A., Lleonart J. 1993. Otolith size changes related with body grotwh, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306. http://dx.doi.org/10.1007/BF00004637

Loy A., Mariani L., Bertelletti M., et al. 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). J. Morphol. 237(2): 137-146. http://dx.doi.org/10.1002/(sici)1097-4687(199808)237:2<137::aid-jmor5>3.0.co;2-z

Loy A., Boglione C., Gagliardi F., et al. 2000. Geometric morphometrics and internal anatomy in sea bass shape analysis (Dicentrarchus labrax L., Moronidae). Aquac. 186: 33-44. http://dx.doi.org/10.1016/S0044-8486(99)00366-X

Monteiro L.R., Reis S.F. 1999. Princípios de morfometria geométrica. Ribeirão Preto, Editora Holos, 198 pp.

Monteiro L.R., Di Beneditto A.P.M., Guillermo L.H., et al. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res. 74: 288-299. http://dx.doi.org/10.1016/j.fishres.2005.03.002

Nolf D. 1985. Otolith piscium. In: Schultze H.P. (ed.). Handbook of Paleoichthyology, Vol. X, Stuttgart and New York, Fisher, pp. 1-145.

Passos A.C., Contente R.F., Araújo C.C.V., et al. 2012. Fishes of Paranaguá Estuarine Complex, South West Atlantic. Biota Neotrop. 12: 227-241. http://dx.doi.org/10.1590/S1676-06032012000300022

Perin S., Vaz-dos-Santos A.M. 2014. Morphometry and relative growth of the Brazilian sardine, Sardinella brasiliensis (Steindachner, 1879) in the Southeastern Brazilian Bight. Arq. Zool. 45: 63-72. http://dx.doi.org/10.11606/issn.2176-7793.v45iespp63-72

Ponton D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? J. Morphol. 267: 750-757. http://dx.doi.org/10.1002/jmor.10439 PMid:16526058

Popper A.N., Ramcharitar J., Campana S.E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshwater. Res. 56: 497-504. http://dx.doi.org/10.1071/MF04267

Rohlf F.J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst. Biol. 47(1): 147-158. http://dx.doi.org/10.1080/106351598261094 PMid:12064235

Rohlf F.J., Marcus L.F. 1993. A revolution in morphometrics. Trends. Ecol. Evol. 8: 129-132. http://dx.doi.org/10.1016/0169-5347(93)90024-J

Rondon A.S., Vaz-dos-Santos A.M., Rossi-Wongtschowski C.L.D.B. 2014. Morfologia e biometria dos otólitos de Beryx splendens e Hoplostethus occidentalis (Beryciformes) no Atlântico Sudoeste. Bol. Inst. Pesca. 40(2): 195-206.

Rossi-Wongtschowski C.L.B., Vaz-dos-Santos A.M., Siliprandi C.C. 2014. Checklist of the marine fishes collected during hydroacoustic surveys in the Southeastern Brazilian Bight from 1995 to 2010. Arq. Zool. 45: 73-88. http://dx.doi.org/10.11606/issn.2176-7793.v45iespp73-88

Santos M.C.O., Rosso S., Santos R.A., et al. 2002. Insights on small cetacean feeding habits in southeastern Brazil. Aquat. Mam. 28: 38-45.

Smale J.M., Watson G., Hecht T. 1995. Otolith atlas of southern African marine fishes. J.L.B Smith Institute of Ichthyology, 74 pp.

Tombari A., Volpedo A.V., Echeverría D.D. 2005. Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentiniensis (Valenciennes, 1835) y O. bonariensis (Valenciennes, 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Rev. Chil. Hist. Nat. 78: 623-633. http://dx.doi.org/10.4067/S0716-078X2005000400003

Torres G.J., Lombarte A., Morales-Nin B. 2000. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fish. Res. 46(1-3): 5-13. http://dx.doi.org/10.1016/S0165-7836(00)00128-4

Tuset V.M., Lozano I.J., Gonzalez J.A., et al. 2003a. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol. 19: 88-93. http://dx.doi.org/10.1046/j.1439-0426.2003.00344.x

Tuset V.M., Lombarte A., González J.A., et al. 2003b. Comparative morphology of the sagitta otolith. J. Fish. Biol. 63: 1491-1504. http://dx.doi.org/10.1111/j.1095-8649.2003.00262.x

Tuset V.M., Lombarte A., Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 72S1: 7-198.

Tuset V.M., Azzurro E., Lombarte A. 2012. Identification of Lessepsian fish species using the sagitta otolith. Sci. Mar. 76(2): 289-299. http://dx.doi.org/10.3989/scimar.03420.18E

Vaz-dos-Santos A.M., Rossi-Wongtschowski C.L.D.B. 2013. Length-weight relationships of the ichthyofauna associated with the Brazilian sardine, Sardinella brasiliensis, on the Southeastern Brazilian Bight (22°S-29°S) between 2008 and 2010. Biota Neotrop. 13(2): 1-6. http://dx.doi.org/10.1590/S1676-06032013000200034

Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol. 420: 26-32. http://dx.doi.org/10.1016/j.jembe.2012.03.021

Vignon M., Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411: 231-241 http://dx.doi.org/10.3354/meps08651

Vilar C.C., Spach H.L., Joyeux J.C. 2011. Spatial and temporal changes in the fish assemblage of a subtropical estuary in Brazil: environmental effects. J. Mar. Biol. Assoc. U.K. 91(3): 635-648. http://dx.doi.org/10.1017/S0025315410001943

Volpedo A.V., Echeverría D.D. 1997. Morfología de las sagittae de lenguados del Mar Argentino (Bothidae, Paralichthydae y Achiropsettidae). Thalassas 13: 113-126.

Volpedo A.V., Echeverría D.D. 1999: Morfología de los otolitos sagittae de juveniles y adultos de Micropogonias furnieri (Desmarest, 1823) (Sciaenidae). Rev. Cienc. Mar Thalassas 15: 19-24.

Volpedo A.V., Echeverría D.D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish. Res. 60: 551-560. http://dx.doi.org/10.1016/S0165-7836(02)00170-4

Volpedo A.V., Tombari A.A., Echeverría D.D. 2008. Ecomorphological patterns in otoliths of Antarctic fish. Polar Biol. 31(5): 635-640. http://dx.doi.org/10.1007/s00300-007-0400-1

Waessle J.A., Lasta C.A., Favero M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36°S). Sci. Mar. 67: 233-240.

Whitehead P.J.P., Nelson G.J., Wongratana T. 1988. FAO Species Catalogue. Vol. 7. Clupeoid fishes of the world (Suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. FAO Fish. Synop. 125(7/2): 305-579.

Wilcox D., Dove B., Mcdavid D., et al. 2002. Image Tools 3.0 for Windows. http://compdent.uthscsa.edu/dig/itdesc.html

Zavala-Camin L.A. 1996. Introdução aos estudos sobre alimentação natural em peixes (1st ed.). Maringá: EDUEM - Editora da Universidade Estadual de Maringá.

Zar J.H. 2010. Biostatistical Analysis. Fourth Edition. Prentice Hall. pp. 947.

Zelditch M.L., Fink W.L., Swiderski D.L., et al. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf. Syst Biol. 47: 159-167. http://dx.doi.org/10.1080/106351598261102

Zelditch M.L, Swiderski D.L., Sheets D.H. 2004. A practical companion to geometric morphometrics for biologists: Running analyses in freely-available software.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es