Scientia Marina, Vol 79, No 3 (2015)

Comparison of isotopic turnover dynamics in two different muscles of a coral reef fish during the settlement phase


https://doi.org/10.3989/scimar.04225.31A

Laura Gajdzik
Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Centre, Université de Liège , Belgium

Gilles Lepoint
MARE, Laboratoire d’Océanologie, Université de Liège , Belgium

David Lecchini
USR 3278 CNRS-EPHE-UPVD - Laboratoire d’Excellence “CORAIL” , French Polynesia

Bruno Frédérich
Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Centre, Université de Liège , Belgium

Abstract


The temporal variation in carbon and nitrogen isotopic compositions (noted as δ13C and δ15N) was investigated in the convict surgeonfish (Acanthurus triostegus) at Moorea (French Polynesia). Over a period of 24 days, juveniles were reared in aquaria and subjected to two different feeding treatments: granules or algae. The dynamics of δ13C and δ15N in two muscles (the adductor mandibulae complex and the epaxial musculature) having different functions were compared. At the end of experiments, a steady-state isotopic system in each muscle tissue was not reached. Especially for the algal treatment, we found different patterns of variation in isotopic compositions over time between the two muscles. The turnovers of δ13C showed opposite trends for each muscle but differences are mitigated by starvation and by the metamorphosis. Our study highlighted that the metabolism of coral reef fish may be subjected to catabolism or anabolism of non-protein precursors at settlement, inducing variation in isotopic compositions that are not linked to diet change.

Keywords


Acanthuridae; stable isotopes; development; ontogeny; metamorphosis; starvation; surgeonfish

Full Text:


HTML PDF XML

References


Ankjærø T., Christensen J.T., Grønkjær P. 2012. Tissue-specific turnover rates and trophic enrichment of stable N and C isotopes in juvenile Atlantic cod Gadus morhua fed three different diets. Mar. Ecol. Prog. Ser. 461: 197-209. http://dx.doi.org/10.3354/meps09871

Bosley K.L., Witting D.A., Chambers R.C., et al. 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 236: 233-240. http://dx.doi.org/10.3354/meps236233

Carassou L., Kulbicki M., Nicola T.J.R., et al. 2008. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21: 1-12. http://dx.doi.org/10.1051/alr:2008017

Caut S., Angulo E., Courchamp F. 2009. Variation in discrimination factors (δ15N and δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46: 443-453. http://dx.doi.org/10.1111/j.1365-2664.2009.01620.x

Colborne S.F., Robinson B.W. 2013. Effect of nutritional condition on variation in δ13C and δ15N stable isotope values in Pumpkinseed sunfish (Lepomis gibbosus) fed different diets. Environ. Biol. Fish. 96: 543-554. http://dx.doi.org/10.1007/s10641-012-0040-3

Doucett R.R., Booth R.K., Power G., et al. 1999. Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): Insights from stable-isotope analysis. Can. J. Fish. Aquat. Sci. 56: 2172-2180. http://dx.doi.org/10.1139/f99-147

Enyidi U., Kiljunen M., Jones R.I., et al. 2013. Nutrient assimilation by first-feeding african catfish, Clarias gariepinus, assessed using stable isotope analysis. J. World Aquacult. Soc. 44: 161-172. http://dx.doi.org/10.1111/jwas.12016

Ferron A., Leggett W.C. 1994. An appraisal of condition measures for marine fish Larvae. Adv. Mar. Biol. 30: 217-303. http://dx.doi.org/10.1016/S0065-2881(08)60064-4

Filbrun J.E., Culver D.A. 2014. Stable isotopes reveal live prey support growth of juvenile channel catfish reared under intensive feeding regimens in ponds. Aquaculture 433: 125-132. http://dx.doi.org/10.1016/j.aquaculture.2014.06.005

Frédérich B., Adriaens D., Vandewalle P. 2008. Ontogenetic shape changes in Pomacentridae (Teleostei, Perciformes) and their relationships with feeding strategies: a geometric morphometric approach. Biol. J. Linn. Soc. 95: 92-105. http://dx.doi.org/10.1111/j.1095-8312.2008.01003.x

Frédérich B., Fabri G., Lepoint G., et al. 2009. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56: 10-17. http://dx.doi.org/10.1007/s10228-008-0053-2

Frédérich B., Lehanse O., Vandewalle P., et al. 2010. Trophic Niche Width, Shift, and Specialization of Dascyllus aruanus in Toliara Lagoon, Madagascar. Copeia. 2: 218-226. http://dx.doi.org/10.1643/CE-09-031

Frédérich B., Colleye O., Lepoint G., et al. 2012. Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus. Front. Zool. 9: 8. http://dx.doi.org/10.1186/1742-9994-9-8 PMid:22533865 PMCid:PMC3495409

Gajdzik L., Vanreusel A., Koedam N., et al. 2014. The mangrove forests as nursery habitats for the ichthyofauna of Mida Creek (Kenya, East Africa). J. Mar. Biol. Assoc. U.K. 94: 865-877. http://dx.doi.org/10.1017/S0025315414000290

Guelinckx J., Maes J., Van Den Driessche P., et al. 2007. Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: A laboratory diet-switch experiment. Mar. Ecol. Prog. Ser. 341: 205-215. http://dx.doi.org/10.3354/meps341205

Hata H., Umezawa Y. 2011. Food habits of the farmer damselfish Stegastes nigricans inferred by stomach content, stable isotope, and fatty acid composition analyses. Ecol. Res. 26: 809-818. http://dx.doi.org/10.1007/s11284-011-0840-5

Hernandez–Lagunas L., Choi I.F., Kaji T., et al. 2005. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol. 278: 347-357. http://dx.doi.org/10.1016/j.ydbio.2004.11.014 PMid:15680355 PMCid:PMC4028833

Herzka S.Z., Holt G.J. 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: Potential applications to settlement studies. Can. J. Fish. Aquat. Sci. 57: 137-147. http://dx.doi.org/10.1139/f99-174

Hesslein R.H., Hallard K.A., Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50: 2071-2076. http://dx.doi.org/10.1139/f93-230

Lauder G.V. 1980. Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J. Morphol. 163: 283-317. http://dx.doi.org/10.1002/jmor.1051630305

Lecchini D. 2005. Spatial and behavioural patterns of reef habitat settlement by fish larvae. Mar. Ecol. Prog. Ser. 301: 247-252. http://dx.doi.org/10.3354/meps301247

Lecchini D., Galzin R. 2003. Synthèse sur l'influence des processus pélagiques et benthiques, biotiques et abiotiques, stochastiques et déterministes, sur la dynamique de l'autorecrutement des poissons coralliens. Cybium 27: 167-184.

Lecchini D., Galzin R. 2005. Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). Mar. Biol. 147: 47-58. http://dx.doi.org/10.1007/s00227-004-1543-z

Lecchini D., Polti S., Nakamura Y., et al, 2006. New perspectives to aquarium fish trade. Fish. Sci. 72: 40-47. http://dx.doi.org/10.1111/j.1444-2906.2006.01114.x

Leis J.M. 2002. Pacific coral-reef fishes: The implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm. Environ. Biol. Fish. 65: 199-208. http://dx.doi.org/10.1023/A:1020096720543

Lepoint G., Dauby P., Gobert S. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. Mar. Pollut. Bull. 49: 887-891. http://dx.doi.org/10.1016/j.marpolbul.2004.07.005 PMid:15556172

Logan J.M., Jardine T.D., Miller T.J., et al. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77: 838-846. http://dx.doi.org/10.1111/j.1365-2656.2008.01394.x PMid:18489570

Maruyama A., Yamada Y., Rusuwa B., et al. 2001. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can. J. Fish. Aquat. Sci. 58: 2125-2128. http://dx.doi.org/10.1139/f01-147

McCormick M.I. 1999. Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): A field experiment. Mar. Ecol. Prog. Ser. 176: 25-38. http://dx.doi.org/10.3354/meps176025

McCormick M.I., Makey L.J. 1997. Post-settlement transition in coral reef fishes: Overlooked complexity in niche shifts. Mar. Ecol. Prog. Ser. 153: 247-257. http://dx.doi.org/10.3354/meps153247

McCormick M.I., Molony B.W. 1992. Effects of feeding history on the growth characteristics of a reef fish at settlement. Mar. Biol. 114: 165-173.

Mill A.C., Pinnegar J.K., Polunin N.V.C. 2007. Explaining isotope trophic-step fractionation: why herbivorous fish are different. Funct. Ecol. 21:1137-1145. http://dx.doi.org/10.1111/j.1365-2435.2007.01330.x

Motulsky H.J. 2007. Prism 5 Statistics Guide, GraphPad Software Inc., San Diego CA, www.graphpad.com.

Ogden J.C., Lobel P.S. 1978. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3: 49-63. http://dx.doi.org/10.1007/BF00006308

Olsen S.A., Hansen P.K., Givskud H., et al. 2015. Changes in fatty acid composition and stable isotope signature of Atlantic cod (Gadus morhua) in response to laboratory dietary shifts. Aquaculture 435: 277-285. http://dx.doi.org/10.1016/j.aquaculture.2014.09.039

Pinnegar J.K., Polunin N.V.C. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13: 225-231. http://dx.doi.org/10.1046/j.1365-2435.1999.00301.x

Randall J.E. 1961. A contribution to the biology of the convict surgeonfish of the Hawaiian Islands, Acanthurus triostegus sandoicensis. Pac. Sci. 15: 215-272.

Rowlerson A., Scapolo P.A., Mascarello F., et al. 1985. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Muscle Res. Cell Motil. 6: 601-640. http://dx.doi.org/10.1007/BF00711917 PMid:3905858

Sampey A., McKinnon A.D., Meekan M.G., et al. 2007. Glimpse into guts: overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339: 243-257. http://dx.doi.org/10.3354/meps339243

Schmidt K., Atkinson A., Stu.bing D., et al. 2003. Trophic relationships among Southern Ocean copepods and krill: Some uses and limitations of a stable isotope approach. Limnol. Oceanogr. 48: 277-289. http://dx.doi.org/10.4319/lo.2003.48.1.0277

Sweeting C.J., Polunin N.V.C., Jennings S. 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass. Sp. 20: 595-601. http://dx.doi.org/10.1002/rcm.2347 PMid:16429479

Tanaka Y., Minami H., Ishihi Y., et al. 2014. Relationship between prey utilization and growth variation in hatchery-reared Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel), larvae estimated using nitrogen stable isotope analysis. Aquacult. Res. 45: 537-545. http://dx.doi.org/10.1111/j.1365-2109.2012.03258.x

Tieszen L.L., Boutton T.W., Tesdahl K.G., et al. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57: 32-37. http://dx.doi.org/10.1007/BF00379558

Vanderklift M.A., Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 136: 169-182. http://dx.doi.org/10.1007/s00442-003-1270-z PMid:12802678

Vandewalle P. 1978. Analyse des mouvements potentiels de la région céphalique du goujoun, Gobio gobio (L.) (Poissons, Cyprinidae). Cybium 3: 15-33.

Wilson R.P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124: 67-80. http://dx.doi.org/10.1016/0044-8486(94)90363-8

Wyatt A.S.J., Waite A.M., Humphries S. 2010. Variability in isotope discrimination factors in coral reef fishes: Implications for diet and food web reconstruction. PLoS One 5: e13682. http://dx.doi.org/10.1371/journal.pone.0013682 PMid:21060681 PMCid:PMC2965116




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es