Scientia Marina, Vol 79, No 2 (2015)

Population structure of the pearly razorfish, Xyrichtys novacula (Actinopterygii: Labridae), in sand-seagrass mosaics: spatial variation according to habitat features and sampling techniques


https://doi.org/10.3989/scimar.04219.05A

Fernando Espino
Grupo de investigación en Biodiversidad y Conservación, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain

Raül Triay-Portella
Grupo de investigación en Ecología Marina Aplicada y Pesquerías, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain

José Antonio González
Grupo de investigación en Ecología Marina Aplicada y Pesquerías, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain

Ricardo Haroun
Grupo de investigación en Biodiversidad y Conservación, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain

Fernando Tuya
Grupo de investigación en Biodiversidad y Conservación, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain

Abstract


Habitat structure affects the distribution of fishes, particularly across reef-dominated habitats, but few studies have connected patterns in the abundance of soft-bottom fishes with the structure of the habitat. The spatial and temporal patterns of variation in the abundance, biomass and population structure of the pearly razorfish, Xyrichtys novacula, inhabiting sand-Cymodocea nodosa seagrass mosaics were described through two complementary techniques: underwater visual counts and seine nets. We sought to analyse whether biotic (seagrass shoot density, leaf length and meadow cover) and abiotic (sediment composition and particle size) structural elements explained variation in patterns of abundance and biomass. Underwater visual counts registered a larger abundance of individuals and proved significant variation in fish abundance and biomass at the scale of locations, which was otherwise not detected through seine nets. Seasonal variation in fish abundance and biomass was, in all cases, minor. Habitat structural elements helped to explain patterns in fish abundance and biomass. This fish species was particularly abundant in sediments dominated by coarse sands in continuous meadows of C. nodosa ( > 90% seagrass cover) with intermediate densities of 500 to 1000 shoots m–2, followed by large-sized seagrass patches with >1000 shoots m–2. A trade-off between protection provided by seagrass canopies and protection derived from its burial behaviour, limited under high seagrass shoot densities, may explain spatial variation patterns.

Keywords


habitat; structural complexity; soft bottoms; sediments; sex ratio

Full Text:


HTML PDF XML

References


Alós J., Cabanellas-Reboredo M., Lowerre-Barbieri S. 2012. Diel behaviour and habitat utilisation by the pearly razorfish during the spawning season. Mar. Ecol. Prog. Ser. 460: 207-220. http://dx.doi.org/10.3354/meps09755

Anderson M.J. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58: 626-639. http://dx.doi.org/10.1139/f01-004

Barberá C., Tuya F., Boyra A., et al. 2005. Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands. Bot. Mar. 48: 122-126. http://dx.doi.org/10.1515/BOT.2005.021

Battaglia P., Castriota L., Consoli P., et al. 2010. Age and growth of pearly razorfish, Xyrichtys novacula (Linnaeus 1758), in the central Mediterranean Sea. J. Appl. Ichthyol. 26: 410-415. http://dx.doi.org/10.1111/j.1439-0426.2009.01383.x

Beltrano A.M., Cannizzaro L., Vitale S., et al. 2006. Preliminary study on the feeding habits of cleaver wrasse Xyrichthys novacula (Pisces: Labridae) in the Strait of Sicily (Mediterranean Sea). Electron. J. Ichthyol. 2: 50-54.

Bentivegna F., Rasotto M.B. 1987. Protogynous hermaphroditism in Xyrichthys novacula (L. 1758). Cybium 11: 75-78.

Boström C., Jackson E.L., Simenstad C.A. 2006. Seagrass landscapes and their effects on associated fauna: A review. Estuar. Coast. Shelf Sci. 68: 383-403. http://dx.doi.org/10.1016/j.ecss.2006.01.026

Box A., Grau A.M., Blanco A., et al. 2009. Els raors (Xyrichthys novacula) a la Reserva dels Freus d'Eivissa i Formentera; efecte de la protecció espacial. Boll. Soc. Hist. Nat. Illes Balears 52: 193-201.

Box A., Deudero S., Blanco A., et al. 2010. Differences in £_13C and £_15N stable isotopes in the pearly razorfish Xyrichtys novacula related to the sex, location and spawning period. J. Fish Biol. 76: 2370-2381. http://dx.doi.org/10.1111/j.1095-8649.2010.02627.x PMid:20557597

Brito A., Pascual P.J., Falcón J.M., et al. 2002. Peces de las Islas Canarias. Catálogo comentado e ilustrado. Francisco Lemus Editor, La Laguna, 419 pp.

Candi G., Castriota L., Andaloro F., et al. 2004. Reproductive cycle and sex inversion in razor fish, a protogynous labrid in the southern Mediterranean Sea. J. Fish Biol. 64: 1498-1513. http://dx.doi.org/10.1111/j.0022-1112.2004.0404.x

Cardinale M., Colloca F., Ardizzone G.D. 1997. Feeding ecology of Mediterranean razorfish Xyrichthys novacula in the Tyrrhenian Sea (central Mediterranean Sea). J. Appl. Ichthyol. 13: 105-111. http://dx.doi.org/10.1111/j.1439-0426.1997.tb00109.x

Cardinale M., Colloca F., Ardizzone G.D. 1998. Growth and reproduction of Xyrichthys novacula (Pisces: Labridae) in the Mediterranean Sea. Sci. Mar. 62: 193-201. http://dx.doi.org/10.3989/scimar.1998.62n3193

Castriota L., Scarabello M.P., Finoia M.G., et al. 2005a. Food and feeding habits of pearly razorfish, Xyrichtys novacula (Linnaeus, 1758), in the southern Tyrrhenian Sea: Variation by sex and size. Environ. Biol. Fish. 72: 123-133. http://dx.doi.org/10.1007/s10641-004-6576-0

Castriota L., Finoia M.G., Andaloro F. 2005b. Trophic interactions between Xyrichtys novacula (Labridae) and juvenile Pagrus pagrus (Sparidae) in the central Mediterranean Sea. Electron. J. Ichthyol. 2: 54-60.

Castriota L., Falautano M., Finoia M.G., et al. 2010. Temporal variations in the diet of pearly razorfish Xyrichtys novacula (Osteichthyes: Labridae). J. Fish Biol. 76: 1626-1639. http://dx.doi.org/10.1111/j.1095-8649.2010.02599.x PMid:20557620

Espino F. 2004. Una metodología para el estudio de las fanerógamas marinas en Canarias. Rev. Acad. Canar. Cienc. 15: 237-256.

Espino F., Tuya F., Brito A., et al. 2011a. Ichthyofauna associated with Cymodocea nodosa meadows in the Canarian Archipelago (central eastern Atlantic): Community structure and nursery function. Cienc. Mar. 37: 157-174. http://dx.doi.org/10.7773/cm.v37i2.1720

Espino F., Tuya F., Brito A., et al. 2011b. Spatial variability in the structure of the ichthyofauna associated with Cymodocea nodosa seagrass meadows across the Canary Islands, north-eastern subtropical Atlantic. Rev. Biol. Mar. Oceanogr. 46: 391-403. http://dx.doi.org/10.4067/S0718-19572011000300009

Espino F., González J.A., Haroun R., et al. 2015. Abundance and biomass of the parrotfish Sparisoma cretense in seagrass meadows: temporal and spatial differences between seagrass interiors and seagrass adjacent to reefs. Environ. Biol. Fish. 98: 121-133. http://dx.doi.org/10.1007/s10641-014-0241-z

Ferrell J.D., Bell J.D. 1991. Differences among assemblages of fish associated with Zostera capricorni and bare sand over a large spatial scale. Mar. Ecol. Prog. Ser. 72: 15-24. http://dx.doi.org/10.3354/meps072015

Fischer W., Bauchot M.L., Schneider M. 1987. Fiches FAO d'identification des espèces pour les besoins de la pêche. (Rév. 1). Méditerranée et Mer Noire. Zone de Pêche 37. Vertébrés, Vol. 2. FAO. Rome. p. 1152.

Franco A., Pérez-Ruzafa A., Drouineau H., et al. 2012. Assessment of fish assemblages in coastal lagoon habitats: Effect of sampling gear method. Estuar. Coast. Shelf Sci. 112: 115-125. http://dx.doi.org/10.1016/j.ecss.2011.08.015

Franquet F., Brito A. 1995. Especies de interés pesquero de Canarias. Consejería de Pesca y Transportes del Gobierno de Canarias, Santa Cruz de Tenerife, 143 pp. PMid:8539665 PMCid:PMC1021326

Froese R., Pauly D. (eds). 2015. FishBase. World Wide Web electronic publication. www.fishbase.org, February 2015.

González-Ortiz V., Alcazar P., Vergara J.J., et al. 2014. Effects of two antagonistic ecosystem engineers on infaunal diversity. Estuar. Coast. Shelf Sci. 139: 20-26. http://dx.doi.org/10.1016/j.ecss.2013.12.015

Goshima S., Peterson C.H. 2012. Both below- and aboveground shoalgrass structure influence whelk predation on hard clams. Mar. Ecol. Prog. Ser. 451: 75-92. http://dx.doi.org/10.3354/meps09587

Gratwicke B., Speight M.R. 2005. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66: 650-667. http://dx.doi.org/10.1111/j.0022-1112.2005.00629.x

Gray C.A., McElligott D.J., Chick R.C. 1996. Intra- and inter-estuary differences in assemblages of fishes associated with shallow seagrass and bare sand. Mar. Freshw. Res. 47: 723-735. http://dx.doi.org/10.1071/MF9960723

Guidetti P. 2000. Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky-algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 50: 515-529. http://dx.doi.org/10.1006/ecss.1999.0584

Guidetti P., Bussotti S. 2002. Effects of seagrass canopy removal on fish in shallow Mediterranean seagrass (Cymodocea nodosa and Zostera noltii) meadows: a local-scale approach. Mar. Biol. 140: 445-453. http://dx.doi.org/10.1007/s00227-001-0725-1

Guidetti P., Lorenti M., Buia M.C., et al. 2002. Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. Mar. Ecol. 23: 51-67. http://dx.doi.org/10.1046/j.1439-0485.2002.02722.x

Gullström M., Bodin M., Nilsson P.G., et al. 2008. Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Mar. Ecol. Prog. Ser. 363: 241-255. http://dx.doi.org/10.3354/meps07427

Hensgen G.M., Holt G.J., Holt S.A., et al. 2014. Landscape pattern influences nekton diversity and abundance in seagrass meadows. Mar. Ecol. Prog. Ser. 507: 139-152. http://dx.doi.org/10.3354/meps10818

Herrera A., Landeira J.M., Tuya F., et al. 2014. Seasonal variability of suprabenthic crustaceans associated with Cymodocea nodosa seagrass meadows off Gran Canaria (eastern Atlantic). Cont. Shelf Res. 88: 1-10. http://dx.doi.org/10.1016/j.csr.2014.06.014

Hori M., Suzuki T., Monthum Y., et al. 2009. High seagrass diversity and canopy-height increased associated fish diversity and abundance. Mar. Biol. 156: 1447-1458. http://dx.doi.org/10.1007/s00227-009-1184-3

Horinouchi M. 2009. Horizontal gradient in fish assemblages structures in and around seagrass habitat: some implications for seagrass habitat conservation. Ichthyol. Res. 56: 109-125. http://dx.doi.org/10.1007/s10228-008-0070-1

Katsanevakis S. 2005. Habitat use by the pearly razorfish, Xyrichtys novacula (Pisces: Labridae). Sci. Mar. 69: 223-229. http://dx.doi.org/10.3989/scimar.2005.69n2223

Lieske E., Myers R. 1994. Collins pocket guide. Coral Reef Fishes. Indo-Pacific and Caribbean including the Red Sea. Harper Collins, New York, 400 pp. PMCid:PMC44323

Marconato A., Tessari V., Marin G. 1995. The mating system of Xyrichthys novacula: Sperm economy and fertilization success. J. Fish Biol. 47: 292-301. http://dx.doi.org/10.1111/j.1095-8649.1995.tb01896.x

Mercader L. 1991. External morphology of the juveniles of Xyrichthys novacula (Linnaeus, 1758) (Pisces, Labridae) from the littoral of Palamós (NW Mediterranean). Misc. Zool. 15: 243-246.

Ministerio de Medio Ambiente. 2002. Estudio Ecocartográfico del Arco Sur de la isla de Gran Canaria. Gobierno de Espa-a. Madrid.

Navarro-Pérez E., Barton E.D. 2001. Seasonal and interannual variability of the Canary Current. Sci. Mar. 65: 205-213.

Nemtzov S.C. 1994. Intraspecific variation in sand-diving and predator avoidance behavior of green razorfish, Xyrichtys splendens (Pisces, Labridae): effect on courtship and mating success. Environ. Biol. Fish. 41: 403-414. http://dx.doi.org/10.1007/BF02197856

Oliver M., Massutí M. 1952. El raó, Xyrichthys novacula (Fam. Labridae). Notas biológicas y biométricas. Bol. Inst. Esp. Oceanogr. 45: 1-15.

Peterson C.H. 1982. Clam predation by whelks (Busycon spp.): Experimental tests of the importance of prey size, prey density, and seagrass cover. Mar. Biol. 66: 159-170. http://dx.doi.org/10.1007/BF00397189

Riera F., Linde M. 2001. El raor, Xyrichthys novacula (Linnaeus, 1758). In: El raor i la cirviola. Conèixer per preservar. Govern de les Illes Balears, Conselleria d'Agricultura i Pesca. Quaderns de Pesca 6: 9-34.

Sachs L. 1982. Applied Statistics: A Handbook of Techniques. Springer-Verlag, New York, 706 pp. http://dx.doi.org/10.1007/978-1-4684-0123-3

Schneider W. 1990. FAO Species Identification Guide for Fishery Purposes. Field Guide to the Commercial Marine Resources of the Gulf of Guinea. FAO, Rome, 268 pp.

Sokal R.R., Rohlf F.J. 2012. Biometry: The Principles and Practice of Statistics in Biological Research. 4th Edition. W.H. Freeman and Company, New York, 937 pp.

Tuya F., Pérez J., Medina L., et al. 2001. Seasonal variation of the macrofauna from three seagrass meadows of Cymodocea nodosa off Gran Canaria (Central-Eastern Atlantic Ocean). Cienc. Mar. 27: 223-234.

Tuya F., Boyra A., Sánchez-Jerez P., et al. 2004. Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Mar. Ecol. Prog. Ser. 278: 157-169. http://dx.doi.org/10.3354/meps278157

Tuya F., Boyra A., Sánchez-Jerez P., et al. 2005. Multivariate analysis of the bentho-demersal ichthyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms beneath sea-cage fish farms. Mar. Biol. 147: 1229-1237. http://dx.doi.org/10.1007/s00227-005-0018-1

Tuya F., Martín J.A., Luque A. 2006. Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, eastern Atlantic). Cienc. Mar. 32: 695-704.

Tuya F., Wernberg T., Thomsen M.S. 2011. The relative influence of local to regional drivers of variation in reef fishes. J. Fish Biol. 79: 217-234. http://dx.doi.org/10.1111/j.1095-8649.2011.03015.x PMid:21722121

Tuya F., Ribeiro-Leite L., Arto-Cuesta N., et al. 2014a. Decadal changes in the structure of Cymodocea nodosa seagrass meadows: Natural vs. human influences. Estuar. Coast. Shelf Sci. 137: 41-49. http://dx.doi.org/10.1016/j.ecss.2013.11.026

Tuya F., Png-González L., Riera R., et al. 2014b. Ecological structure and function differs between habitats dominated by seagrasses and green seaweeds. Mar. Environ. Res. 98: 1-13. http://dx.doi.org/10.1016/j.marenvres.2014.03.015 PMid:24836641

Underwood A.J. 1997. Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, 504 pp.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es