Scientia Marina, Vol 79, No 1 (2015)

Environmental factors affecting larval fish community in the salt marsh area of Guadiana estuary (Algarve, Portugal)

Renata Gonçalves
Universidade do Algarve, Faculdade de Ciências e Tecnologia - CCMAR, Centro de Ciências do Mar, Portugal

Ana Dulce Correia
Capel Manor College, Animal Care Department - ULHT Faculdade de Engenharia, Universidade Lusófona, United Kingdom

Natasa Atanasova
CIMA, Centro de Investigação Marinha e Ambiental, Portugal

Maria Alexandra Teodósio
Universidade do Algarve, Faculdade de Ciências e Tecnologia - CCMAR, Centro de Ciências do Mar, Portugal

Radhouan Ben-Hamadou
Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar

Luís Chícharo
Universidade do Algarve, Faculdade de Ciências e Tecnologia - CIMA, Centro de Investigação Marinha e Ambiental, Portugal


Salt marsh areas in the Guadiana estuary are important nursery sites for many fish species of commercial and recreational value. More effective protection measures should be adopted as the area is highly affected by anthropogenic and natural threats. Studying larval fish communities in these impacted nursery areas will be relevant to the management of local ecosystems and to larval fish ecology in general. Spatial and seasonal distribution and the effect of environmental factors on the larval fish community of this ecosystem were studied for one year (April 2010 to March 2011). Larvae were sampled monthly in parallel with phytoplankton and zooplankton. Hydrological data and physical parameters were monitored. A decision tree model was used to assess the influence of environmental factors on the larval fish community. A total of 130 larvae and 1171 eggs were caught. Diplodus sargus, Sardina pilchardus, and Pomatoschistus microps were the most abundant larval fish species. The peaks of fish larvae abundance occurred in March and April. The output of the model demonstrates that the abundance of larval fish is determined by the abundance of eggs, zooplanktonic food, and water flood and flow. This study shows the importance of the Guadiana salt marsh as an area for fish nursery and highlights the need for conservation of this area.


larval fish; salt marsh; Guadiana estuary; fish eggs; food availability; flooding events; river flow

Full Text:



Antholz B., Meyer-Antholz W., Zander C.D. 1991. Feeding activities of two euryhaline small-sized fish in a western Baltic brackish fjord. Helgolander Meeresun. 45: 287-300.

Baltz D.M., Chet Rakocinski C., Fleeger J. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary. Environ. Biol. Fish. 36: 109-126.

Beja P., Rosa S., Porto M., et al. 2007. Plano de Ordenamento da Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António da Mata de Monte Gordo e dos Sapais de Beliche-Caroucha. ERENA – Ordenamento e Gestão de Recursos Naturais, Lda. 28 pp. PMCid:PMC1815222

Chícharo M.A. 1998. Nutritional condition and starvation in Sardina pilchardus (L.) larvae off Southern Portugal compared with some environmental factors. J. Exp. Mar. Biol. Ecol. 225: 123-137.

Chícharo L., Chícharo M.A., Amaral A., et al. 2000. Valorização dos recursos pesqueiros do estuaário do Guadiana. Relatório Final do Projecto. Acção de Valorização do Baixo Guadiana. ODIANA, 111 pp.

Chícharo L., Chícharo M.A., Ben-Hamadou R. 2006. Use of a hydrotechnical infrastructure (Alqueva dam) to regulate planktonic assemblages in the Guadiana estuary: basis for sustainable water and ecosystem services management. Est. Coast. Shelf. Sci. 70 (1-2): 3-18.

Chícharo M.A., Leitão T., Range P., et al. 2009. Alien species in the Guadiana Estuary (SE-Portugal/SW-Spain): Blackfordia virginica (Cnidaria, Hydrozoa) and Palaemon macrodactylus (Crustacea, Decapoda): potential impacts and mitigation measures. Aquat. Inv. 4(3): 501-506.

Chícharo M.A., Amaral A., Faria A., et al. 2012. Are tidal lagoons ecologically relevant to larval recruitment of small pelagic fish? An approach using nutritional condition and growth rate. Est. Coast. Shelf. Sci. 112: 265-279.

Clarke K.R., Warwick R.M. 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, second ed. Primer-e, Plymouth, UK, 160 pp.

Costa M.J., Vasconcelos R., Costa J.L., et al. 2007. River flow influence on the fish community of the Tagus estuary (Portugal). Hydrobiologia. 587: 113-123.

Craig J.K., Crowder L.B. 2000. Factors influencing habitat selection in fishes with a review of marsh ecosystems. pp. 241- 265 In: Weinstein M.P. and Kreeger D.A. (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, 875 pp.

Dolbeth M., Martinho F., Viegas I., et al. 2008. Estuarine production of resident and nursery fish species: Conditioning by drought events? Est. Coast. Shelf. Sci. 78: 51-60.

Faria A., Morais P., Chícharo M.A. 2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal area, South-East Portugal. Est. Coast. Shelf. Sci. 70: 85-97.

França S., Costa M.J., Cabral H.N. 2009. Assessing habitat specific fish assemblages in estuaries along the Portuguese coast. Est. Coast. Shelf. Sci. 83: 1-12.

Franco A. Gillanders M., Benedetto G., et al. 2012. Dispersal patterns of coastal fish: implications for designing networks of marine protected areas. PLoS ONE. 7(2):e31681. PMid:22355388 PMCid:PMC3280317

Franco-Gordo C., Godınez-Dominguez E., Suarez-Morales E. 2002. Larval fish assemblages in waters off the central Pacific coast of Mexico. J. Plankton Res. 24: 775-784.

Garel E., Pinto L., Santos A., et al. 2009. Tidal and river discharge forcing upon water and sediment circulation at a rock-bound estuary (Guadiana estuary, Portugal). Est. Coast. Shelf. Sci. 84(2): 269-281.

Gonçalves E., Beldade R. 2000. Avaliação do Estado de Conhecimento e Inventariação das Comunidades Ictiológicas da Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António. Relatório Final-ISPA, ICN, RNSCMVRSA, Lisboa, 26 pp.

Gonçalves R., Ben-Hamadou R., Chícharo L. 2012. Selection of coastal estuarine habitats by Atherina boyeri larvae in laboratory experiments. Ecohydrol. Hydrobiol. 12(4): 321-326.

Grasshoff K., Ehrhardt M., Kremling K. 1983. Methods of Seawater Analysis. Second ed. Verlag Chemie, Kiel, 419 pp.

Green B., Smith D., Earley S., et al. 2009. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom. Est. Coast. Shelf. Sci. 85: 247-256.

Hampel H., Cttrijijsse M., Vincx M. 2003. Tidal, diel and semi-lunar changes in the faunal assemblage of an intertidal salt marsh creek. Est. Coast. Shelf. Sci. 56: 795-805.

Hettler W. 1989. Nekton use of regularly-flooded salt marsh cordgrass habitat in North Carolina, USA. Mar. Ecol. Prog. Ser. 56: 111-118.

Hindell J.S., Jenkins G.P. 2004. Spatial and temporal variability in the assemblage structure of fishes associated with mangroves (Avicennia marina) and intertidal mudflats in temperate Australian . Mar. Biol. 144: 385-395.

Jin B., Fu C., Zhong J., et al. 2007. Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China. Est. Coast. Shelf. Sci. 73: 844-852.

Knap A.H., Michaels A.T., Close A., et al. (eds). 1996. Protocol for the Joint Global Ocean Flux Study (JGOFS) Core measurements, JGOFS Report No. 19, Reprint of the IOC Manuals and Guides No. 29. 170 pp.

Kneib R.T. 1997. Early life stages of resident nekton in intertidal marshes. Estuaries. 20: 214-230.

Koutsogiannopoulou V., Wilson J. 2007. The fish assemblage of the intertidal salt marsh creeks in North Bull Island, Dublin Bay: seasonal and tidal changes in composition, distribution and abundance. Hydrobiologia. 588: 213-224.

Kramer D.L., Rangeley R.W., Chapman L.J. 1997. Habitat selection: patterns of spatial distribution from behavioural decisions. In: Godin J.J. (ed.), Behavioural ecology of teleost fishes. Oxford University Press, New York, NY, USA, pp 37-80.

Laffaille P., Feunteun E., Lefeuvre J.C. 2000. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France). Est. Coast. Shelf. Sci. 51(4): 429-438.

Landis J.R., Koch G.G. 1977. The measurement of observer agreement for categorical data. Biometrics. 33: 159-174. PMid:843571

Leis J.M. 2006. Are larvae of demersal fishes plankton or nekton? Adv. Mar. Biol. 51: 57-141.

Mathieson S., Cattrijsse A., Costa M.J., et al. 2000. Fish assemblages of European tidal marshes, a comparison based on species, families and functional guilds. Mar. Ecol. Prog. Ser. 204: 225-242.

Mendonça V.M., Raffaelli D.G., Boyle P.R., et al. 2009. Trophodynamics in a Shallow Lagoon off Northwestern Europe (Culbin Sands, Moray Firth): Spatial and Temporal Variability of Epibenthic Communities, Their Diets, and Consumption Efficiency. Zool. Stud. 48(2): 196-214.

Meynecke J., Lee S.Y., Duke N.C., et al. 2006. Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Est. Coast. Shelf. Sci. 69: 491-504.

Morais P., Chícharo M.A., Chícharo L. 2009. Changes in a temperate estuary during the filling of the biggest European dam. Sci. Total Environ. 407: 2245-2259. PMid:19155053

Morote E., Olivar M.P., Villate F., et al. 2010. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in Northwest Mediterranean: influence of prey availability and ontogeny. ICES J. Mar. Sci. 67: 897-908.

Muha T.P., Chícharo L., Morais P., et al. 2012. The effect of distinct hydrologic condition on the zooplankton community in an estuary under Mediterranean climate influence. Ecohydrol. Hydrobiol. 12(4): 327-335.

Pereira R., Teodódio M.A., Garrido S. 2014. An experimental study of Aurelia aurita feeding behavior: inference of the potential predation impact on a temperate estuarine nursery area. Est. Coast. Shelf. Sci. 146: 102-110.

Quinlan J.R. 1993. C4. 5: programs for machine learning. Morgan Kaufmann Publishers Inc. San Francisco CA, USA, 302 pp. PMCid:PMC1554917

Quinn G.P., Keough M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Edinburgh, UK, 553 pp.

Ré P. 1999. Ictioplâncton estuarino da Península Ibérica (Guia de identificação dos ovos e estados larvares planctónicos). Câmara Municipal de Cascais, Cascais, 163 pp.

Riveiro I., Guisande C., Maneiro I., et al. 2004. Parental effects in the European sardine Sardina pilchardus. Mar. Ecol. Prog. Ser. 274: 225-234.

Rountree R.A., Able K.W. 1996. Seasonal abundance, growth, and foraging habitats of juvenile smooth dogfish, Mustelus canis, in a New Jersey estuary. Fish. Bull. 94: 522-534.

Russell F.S. 1976. The eggs and planktonic stages of British marine fishes. Academic Press, NY, USA, 524 pp.

Salen-Picard C., Darnaude A.M., Arlhac A.M., et al. 2002. Fluctuations of macrobenthic populations: a link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia 133: 380-388.

Sanchez-Velasco L., Norbis W. 1997. Comparative diets and feeding habits of Boops boops and Diplodus sargus larvae, two sparid fishes co-occurring in the Northwestern Mediterranean (May 1992). Bull. Mar. Sci. 61(3): 821-835.

Strydom N., Whitfield A., Paterson A. 2002. Influence of altered freshwater flow regimes on abundance of larval and juvenile Gilchristella aestuaria (Pisces: Clupeidae) in upper reaches of two South African estuaries. Mar. Freshw. Res. 53: 431-438.

Veiga P., Vieira L., Bexiga C., et al. 2006. Structure and temporal variations of fish assemblages of the Castro Marim salt marsh, southern Portugal. Est. Coast. Shelf. Sci. 70: 27-38.

Videira N., Antunes P., Santos R. 2008. Scoping river basin management issues with participatory modeling: The Baixo Guadiana experience. Ecol. Econ. 68: 965-978.

Whitfield A.K., 2005. Fishes and freshwater in southern African estuaries e a review. Aquat. Living Resour. 18: 275-289.

Witten I.H., Frank E., Hall M.A. 2011. Data mining: Practical machine learning tools and techniques, Morgan Kaufmann Publishers. Burlington, MA, USA, 664 pp.

Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support