Stock identification of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean on the basis of beak and statolith morphology

Authors

  • Zhou Fang College of Marine Sciences, Shanghai Ocean University
  • Bilin Liu College of Marine Sciences, Shanghai Ocean University - The Key Laboratory of Shanghai Education Commission for Oceanic Fisheries Resources Exploitation - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education
  • Jianghua Li College of Marine Sciences, Shanghai Ocean University - The Key Laboratory of Shanghai Education Commission for Oceanic Fisheries Resources Exploitation - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education
  • Hang Su College of Marine Sciences, Shanghai Ocean University
  • Xinjun Chen College of Marine Sciences, Shanghai Ocean University - The Key Laboratory of Shanghai Education Commission for Oceanic Fisheries Resources Exploitation - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education

DOI:

https://doi.org/10.3989/scimar.03991.06A

Keywords:

Ommastrephes bartramii, statolith, beaks, morphology, geographic stock, stepwise discriminant analysis

Abstract


Cephalopods are becoming increasingly important in global fisheries as a result of increased landings and are playing an important ecological role in the trophic dynamics of marine ecosystems. Ommastrephes bartramii is a pelagic cephalopod species with two widely distributed spawning stocks in the North Pacific Ocean. It is also a major fishing target for the Chinese squid jigging fleets. Successful separation of these two spawning stocks is critical to fisheries management, but tends to be challenging because of their similar morphology. In this study we attempted to identify the stocks based on discriminant analyses of 9 morphological variables of statolith and 12 variables of beaks measured for O. bartramii samples in the North Pacific. A significant difference was revealed in the standardized beak and statolith variables between sexes in the northeast (NE) stock (P < 0.05). The northwest (NW) stock showed significant differences between sexes for all variables (P < 0.05) except for upper wing length (P > 0.05), whereas the NW stock showed no significant difference in either sex for the statolith variables (P > 0.05). The same sex also revealed different patterns with different hard structures between the two stocks. In t-tests females showed significant differences between stocks in statolith morphology (P < 0.05) and beak morphology (P < 0.05); males also showed this difference between cohorts in statolith variables (P < 0.05) except dorsal dome length and wing length (P > 0.05), but showed no difference between cohorts (P > 0.05) in beak morphometric variables. With the combination of two standardized hard parts, correct classification of stepwise discriminant analysis (SDA) was raised by nearly 20% compared with using only one structure, although overlaps of the NW stock were still found in the scatter-plots. It is concluded that adding more appropriate hard structure variables will effectively increase the success of separating geographic stocks by the SDA method.

Downloads

Download data is not yet available.

References

Adkison M.D. 1995. Population differentiation in Pacific salmons: local adaptation genetic drift, or the environment? Can. J. Fish. Aquat. Sci. 52(12): 2762-2777. http://dx.doi.org/10.1139/f95-865

Arkhipkin A.I. 2003. Towards identification of the ecological lifestyle in nektonic squid using statolith morphometry. J. Mollus. Stud. 69: 171-178. http://dx.doi.org/10.1093/mollus/69.3.171

Arkhipkin A.I. 2005. Statolith as black boxes (life recorders) in squid. Mar. Freshwater Res. 56(5): 573-583. http://dx.doi.org/10.1071/MF04158

Arkhipkin A.I., Bizikov V.A. 2000. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids. J. Zool. 250(1): 31-55. http://dx.doi.org/10.1111/j.1469-7998.2000.tb00575.x

Arkhipkin A.I., Shcherbich Z.N. 2012. Thirty years' progress in age determination of squid using statoliths. J. Mar. Biol. Ass. U. K. 92(06): 1389-1398. http://dx.doi.org/10.1017/S0025315411001585

Bizikov V. A., Arkhipkin A. I. 1997. Morphology and microstructure of the gladius and statolith from the boreal Pacific giant squid Moroteuthis robusta (Oegopsida; Onychoteuthidae). J. Zool. 241(3): 475-492. http://dx.doi.org/10.1111/j.1469-7998.1997.tb04839.x

Bower J.R., Ichii T. 2005. The red flying squid (Ommastrephes bartramii): A review of recent research and the fishery in Japan. Fish. Res. 76(1): 39-55. http://dx.doi.org/10.1016/j.fishres.2005.05.009

Bower S.M., Margolis L. 1991. Potential use of helminth parasites in stock identification of flying squid, Ommastrephes bartramii, in North Pacific waters. Can. J. Zool. 69(4): 1124-1126. http://dx.doi.org/10.1139/z91-158

Burke W.T., Freeberg M., Miles E.L. 1993. United Nations Resolutions on driftnet fishing: An unsustainable precedent for high seas and coastal fisheries management. Ocean Dev. Int. Law. 25: 127-186. http://dx.doi.org/10.1080/00908329409546030

Cabanellas-Reboredo M., Alós J., Palmer M., et al. 2011. Simulating the indirect handline jigging effects on the European squid (Loligo vulgaris) in captivity. Fish. Res. 110(3): 435-440. http://dx.doi.org/10.1016/j.fishres.2011.05.013

Cadrin S.X., Silva V.M. 2005. Morphometric variation of yellowtail flounder. ICES J. Mar. Sci. 62: 683-694. http://dx.doi.org/10.1016/j.icesjms.2005.02.006

Castanhari G., Tomás A.R.G. 2012. Beak increment counts as a tool for growth studies of the common octopus Octopus vulgaris in southern Brazil. Bol. Inst. Pesca, São Paulo 38(4): 323-331.

Chen C.S. 2010. Abundance trends of two neon flying squid (Ommastrephes bartramii) stocks in the North Pacific. ICES J. Mar. Sci. 67(7): 1336-1345.

Chen C.S., Chiu T.S. 2003. Variations of life history parameters in two geographical groups of the neon flying squid, Ommastrephes bartramii, from the North Pacific. Fish. Res. 63: 349-366. http://dx.doi.org/10.1016/S0165-7836(03)00101-2

Chen X.J., Tian S.Q., Ye X.C. 2002. Study on population structure of flying squid in Northwestern Pacific based on gray system theory. J. Shanghai Fish. Univ. 11(4): 335-341. (In Chinese with English Abstract)

Chen X.J., Liu B.L., Wang Y.G. 2009. Cephalopod of the world. Marine Press, Beijing, China, 1064 pp.

Chen X.J., Ma J., Liu B.L., et al. 2010. Effects of sexual maturity and body size on statolith shape of Ommastrephes bartramii in the Northwest Pacific Ocean. J. Fish. China. 30(6): 928-934. (In Chinese with English abstract)

Chen F., Chen X.J., Lu H.J., et al. 2011. Comparison of biological characteristics of Ommastrephes bartarmii between two different areas in the east central waters of North Pacific Ocean. J. Shanghai Fish. Univ. 20(5): 759-764. (In Chinese with English Abstract)

Chen X.J., Lu H.J., Liu B.L., et al. 2012. Species identification of Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis and Illex argentinus (Ommastrephidae) using beak morphological variables. Sci. Mar. 76(3): 473-481. http://dx.doi.org/10.3989/scimar.03408.05B

Chen X.J., Li J.H., Liu B.L., et al. 2013. Age, growth and population structure of Jumbo flying squid, Dosidicus gigas, off the Costa Rica Dome. J. Mar. Biol. Ass. U. K. 93:567-573 http://dx.doi.org/10.1017/S0025315412000422

Cherel Y., Hobson K.A. 2005. Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc. R. Soc. Lond. B. 272: 1601-1607. http://dx.doi.org/10.1098/rspb.2005.3115 PMid:16048776 PMCid:PMC1559839

Cherel Y., Ridoux V., Spitz J., et al. 2009. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid. Biol. Lett. 5: 364-367. http://dx.doi.org/10.1098/rsbl.2009.0024 PMid:19324634 PMCid:PMC2679927

Clarke M.R. 1962. The identification of cephalopod "beaks" and the relationship between beak size and total body weight. Bull. Br. Mus. nat. Hist. Zool. 8: 419-480

Clarke M.R. 1978. The cephalopod statolith-introduction to its form. J. Mar. Biol. Ass. U.K. 58: 701-712. http://dx.doi.org/10.1017/S0025315400041345

Clarke M.R. 1986. A handbook for the identification of cephalopod beaks. Clarendon Press, Oxford, UK, 273 pp.

Clarke M.R. 2003. Potential of statoliths for interpreting coleoid evolution: a brief review. Ber. Palä. Abh. 3: 37-47.

Crespi-Abril A.C., Morsan E.M., Barón P.J. 2010. Analysis of the ontogenetic variation in body and beak shape of the Illex argentinus inner shelf spawning groups by geometric morphometrics. J. Mar. Biol. Ass. U. K. 90(03): 547-553. http://dx.doi.org/10.1017/S0025315409990567

Dommergues J.L., Neige P., Boletzky S.V. 2000. Exploration of morphospace using procrustes analysis in statoliths of cuttlefish and squid (Cephalopoda: Decabrachia)-evolutionary aspects of form disparity. Veliger-berkeley, 43(3): 265-276.

Durholtz M.D., Lipinski M.R., Przybylowicz W.J., et al. 1997. Nuclear microprobe mapping of statoliths of chokka squid Loligo vulgaris reynaudii d'Orbigny, 1845. Biol. Bull. 193(2): 125-140. http://dx.doi.org/10.2307/1542758

Fang Z., Chen X.J., Lu H.J., et al. 2012. Morphological differences in statolith and beak between two spawning stocks for Illex argentinus. Acta. Ecol. Sin. 32(19): 5986-5997. (In Chinese with English Abstract) http://dx.doi.org/10.5846/stxb201109101331

Francis R.I.C.C., Mattlin R.H. 1986. A possible pitfall in the morphometric application of discriminant analysis: measurement bias. Mar. Biol. 93(2): 311-313. http://dx.doi.org/10.1007/BF00508269

Guerra A., Rodríguez-navarro A.B., González A.F., et al. 2010. Life-history traits of the giant squid Architeuthis dux revealed from stable isotope signatures recorded in beaks. ICES J. Mar. Sci. 67(7): 1425-1431.

Hanlon R.T., Messenger J.B. 1996. Cephalopod Behaviour. Cambridge University Press Cambridge, UK, 232 pp. PMCid:PMC2271250

Ichii T., Mahapatra K., Sakai M., et al. 2004. Differing body size between the autumn and the winter-spring cohorts of neon flying squid (Ommastrephes bartramii) related to the oceanographic regime in the North Pacific: a hypothesis. Fish. Oceanogr. 13: 295-309 http://dx.doi.org/10.1111/j.1365-2419.2004.00293.x

Ichii T., Mahapatra K., Sakai M., et al. 2009. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Mar. Ecol. Prog. Ser. 378: 1-11. http://dx.doi.org/10.3354/meps07873

Ikeda Y., Arai N., Sakamoto W., et al. 1996. PIXE analysis of trace elements in squid statoliths: comparison between Ommastrephidae and Loliginidae. International Journal of PIXE. 6: 537-542. http://dx.doi.org/10.1142/S0129083596000594

Ikeda Y., Arai N., Sakamoto W., et al. 1997. Comparison on trace elements in squid statoliths of different species' origin as available key for taxonomic and phylogenetic study. International Journal of PIXE. 7: 141-146. http://dx.doi.org/10.1142/S0129083597000175

Ikeda Y., Arai N., Kidokoro H., et al. 2003. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behavior. Mar. Ecol. Prog. Ser. 251(1): 169-179. http://dx.doi.org/10.3354/meps251169

Jackson G.D., Domeier M.L. 2003. The effects of an extraordinary El Ni-o/La Ni-a event on the size and growth of the squid Loligo opalescens off Southern California. Mar. Biol. 142(5): 925-935.

Katugin O.N. 2002. Patterns of genetic variability and population structure in the North Pacific squids Ommastrephes bartramii, Todarodes pacificus and Berryteuthis magister. Bull. Mar. Sci. 71(1): 383-420.

Kurosaka K., Yamashita H., Ogawa M., et al. 2012. Tentacle-breakage mechanism for the neon flying squid (Ommastrephes bartramii) during the jigging capture process. Fish. Res. 121: 9-16. http://dx.doi.org/10.1016/j.fishres.2011.12.016

Lefkaditou E., Bekas P. 2004. Analysis of beak morphometry for the horned octopus Eledone cirrhosa (Cephalopoda: Octopoda) from the Thracian Sea (NE Mediterranean). Mediterr. Mar. Sci. 5(1): 143-149. http://dx.doi.org/10.12681/mms.219

Lefkaditou E., Peristeraki P., Chartosia N., et al. 2011. Recent findings of Ommastrephes bartramii (Cephalopoda: Ommastrephidae) in the eastern Mediterranean and the implication on its range expansion. Mediterr. Mar. Sci. 12(2): 413-428. http://dx.doi.org/10.12681/mms.41

Lipinski M. R., Underhill L. G. 1995. Sexual maturation in squid: quantum or continuum. S. Afr. J. Mar. Sci. 15: 207-223 http://dx.doi.org/10.2989/02577619509504844

Lleonart J., Salat J., Torres G.J. 2000. Removing allometric effects of body size in morphological analysis. J. Thero. Biol. 205: 85-93. http://dx.doi.org/10.1006/jtbi.2000.2043 PMid:10860702

Lombarte A., Sanchez P., Morales-Nin B. 1997. Intraspecific shape variability in statoliths of three cephalopod species. Vie Milieu 47: 165-169.

Lombarte A., Rufino M.M., Sánchez P. 2006. Statolith identification of Mediterranean Octopodidae, Sepiidae, Loliginidae, Ommastrephidae and Enoploteuthidae based on warp analyses. J. Mar. Biol. Ass. U. K. 86(04): 767-771. http://dx.doi.org/10.1017/S0025315406013683

Lu C.C., Ickeringill R. 2002. Cephalopod beak identification and biomass estimation techniques: tools for dietary studies of southern Australian finfishes. Mus. Victoria Sci. Rep. 6: 1-65.

Ma J., Chen X.J., Liu B.L., et al. 2009. Morphologic Features of Statolith for Ommastrephes bartramii in the Northwest Pacific Ocean. Periodical of Ocean University of China 39(2): 215-220. (In Chinese with English abstract)

Martínez P., Sanjuan A., Guerra A. 2002. Identification of Illex coindetii, I. illecebrosus and I. argentines (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean by body and beak characters. Mar. Biol. 141:131-143 http://dx.doi.org/10.1007/s00227-002-0796-7

Mercer M.C., Misra R.K., Hurley G.V. 1980. Sex determination of the Ommastrephid squid Illex illecebrosus using beak morphometric. Can. J. Fish. Aquat. Sci. 37: 283-286 http://dx.doi.org/10.1139/f80-035

Miserez A., Rubin D., Waite J.H. 2010. Cross-linking Chemistry of Squid Beak. J. Biol. Chem. 285(49): 38115-38124. http://dx.doi.org/10.1074/jbc.M110.161174 PMid:20870720 PMCid:PMC2992245

Moltschaniwskyj N.A. 1995. Changes in shape associated with growth in the loliginid squid Photololigo sp.: a morphometric approach. Can. J. Zool. 73(7): 1335-1343. http://dx.doi.org/10.1139/z95-157

Murakami K., Watanabe Y., Nakata J. 1981. Growth, distribution and migration of flying squid (Ommastrephes bartrami) in the North Pacific. In: Mishima, S. (ed.), Pelagic animals and environments around the Subarctic Boundary in North Pacific. Hokkaido University, Research Institute of North Pacific Fisheries, Hakodate, pp. 161-179 (In Japanese with English abstract)

Murata M. 1990. Oceanic resources of squids. Mar. Behav. Phys. 18: 19-71. http://dx.doi.org/10.1080/10236249009378779

Murata M., Hayase S. 1993. Life history and biological information on flying squid (Ommastrephes bartramii) in the North Pacific Ocean. Bull. Int. Nat. North Pacific Comm. 53: l47-182.

Nagasawa K., Mori J., Okamura H. 1998. Parasites as biological tags of stocks of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean, In: Okutani, T. (1998), Contributed papers to International Symposium on Large Pelagic Squids, July 18-19, 1996, for JAMARC's 25th anniversary of its foundation, pp. 49-64.

Neige P. 2006. Morphometrics of hard structures in cuttlefish. Vie Milieu 56(2): 121-127.

Neige P., Dommergues, J.L. 2002. Disparity of beaks and statoliths of some coleoids a morphometric approach to depict shape differentiation. Gabh. der Geol. Bun. 57: 393-399

O'Dor R.K., Dawe E.G. 1998. Illex illecebrosus. In: Rodhouse P.G., Dawe E.G., O'Dor R.K. (eds), Squid recruitment dynamics. FAO Fish Tech Pap 376, Rome, pp. 77-104.

O'Dor R.K., Hoar J.A. 2000. Does geometry limit squid growth? ICES J. Mar. Sci. 57(1): 8-14. http://dx.doi.org/10.1006/jmsc.1999.0502

Ogden R.S., Allcock A.L., Wats P.C., et al. 1998. The role of beak shape in octopodid taxonomy. S. Afr. J. Mar. Sci. 20(1): 29-36. http://dx.doi.org/10.2989/025776198784126476

Perales-Raya C., Jurado-Ruzafa A., Bartolomé A., et al. 2014. Age of spent Octopus vulgaris and stress mark analysis using beaks of wild individuals. Hydrobiologia 725(1): 105-114. http://dx.doi.org/10.1007/s10750-013-1602-x

Piatkowski U., Pu.tz K., Heinemann H. 2001. Cephalopod prey of king penguins (Aptenodytes patagonicus) breeding at Volunteer Beach, Falkland Islands, during austral winter 1996. Fish. Res. 52(1): 79-90. http://dx.doi.org/10.1016/S0165-7836(01)00232-6

Pierce G. J., Hastie L. C., Guerra A., et al. 1994. Morphometric variation in Loligo forbesi and Loligo vulgaris: regional, seasonal, sex, maturity and worker differences. Fish. Res. 21(1): 127-148. http://dx.doi.org/10.1016/0165-7836(94)90100-7

Pineda S.E., Hernández D.R., Brunetti N.E., et al. 2002. Morphological identification of two Southwest Atlantic Loliginid squids: Loligo gahi and Loligo sanpaulensis. Rev. Invest. Desarr. Pesq. 15: 67-84.

Raya C.P., Hernández-González C.L. 1998. Growth lines within the beak microstructure of the octopus Octopus vulgaris Cuvier, 1797. S. Afr. J. Mar. Sci. 20(1): 135-142. http://dx.doi.org/10.2989/025776198784126368

Raya C.P., Bartolomé A., García-Santamaría M.T., et al. 2010. Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: Improvement and comparisons. Fish. Res. 106: 171-176 http://dx.doi.org/10.1016/j.fishres.2010.05.003

Rencher A.C. 2002. Methods of Multivariate Analysis, 2nd edition. John Wiley & Sons, Inc, New York. http://dx.doi.org/10.1002/0471271357

Rocha F., Guerra A., González A.F. 2001. A review of reproductive strategies in cephalopods. Biol. Rev. 76: 291-304. http://dx.doi.org/10.1017/S1464793101005681 PMid:11569786

Rodhouse P.G. 2005. World squid resources. Review of the state of world marine fishery resources, FAO Tech. Rep. C2:175.

Ruiz-Cooley R.I., Ballance L.T., McCarthy M.D. 2013. Range Expansion of the Jumbo Squid in the NE Pacific: δ15N Decrypts Multiple Origins, Migration and Habitat Use. PloS One. 8(3): e59651. http://dx.doi.org/10.1371/journal.pone.0059651 PMid:23527242 PMCid:PMC3601055

Sajina A.M., Chakraborty S.K., Jaiswar A.K., et al. 2011. Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fish. Res. 108: 100-105 http://dx.doi.org/10.1016/j.fishres.2010.12.006

Sánchez P. 1995. Age and growth of Illex coindetii. ICES J. Mar. Sci. 199: 441-444

Smale M.J., Clarke M.R., Klages N.T.W., et al. 1993. Octopod beak identification—resolution at a regional level (Cephalopoda, Octopoda: Southern Africa). S. Afr. J. Mar. Sci. 13(1): 269-293. http://dx.doi.org/10.2989/025776193784287338

Uchikawa K., Sakai M., Wakabayashi T., et al. 2009. The relationship between paralarval feeding and morphological changes in the proboscis and beaks of the neon flying squid Ommastrephes bartramii. Fish. Sci. 75(2): 317-323. http://dx.doi.org/10.1007/s12562-008-0036-2

Vega M.A., Rocha F.J., Guerra A., et al. 2002. Morphological difference between the Patagonian squid Loligo gahi populations from the Pacific and Atlantic Oceans. Bull. Mar. Sci. 71(2): 903-913

Villanueva R. 1992. Interannual growth differences in the oceanic squid Todarodes angolensis Adam in the northern Benguela upwelling system, based on statolith growth increment analysis. J. Exp. Mar. Biol. Ecol., 159(2): 157-177. http://dx.doi.org/10.1016/0022-0981(92)90034-8

Wang Y.G., Chen X.J. 1998. The current exploitation of cephalopod resources in the world and the development of Chinese distant-water squid jigging fisheries. J. Shanghai Fish. Univ. 7: 285-287 (In Chinese with English abstract)

Wang Y.G., Chen X.J. 2005. The Resource and Biology of Economic Oceanic Squid in the World. Ocean Press, Beijing, pp. 79-295.

Wolff G.A. 1984. Identification and estimation of size from the beaks of 18 species of cephalopods from the Pacific Ocean. NOAA Technical Report NMFS 17: 1-50

Xavier J.C., Cherel Y. 2009. Cephalopod beak guide for the southern ocean. British Antarctic Survey Press, Cambridge, UK, 129 pp.

Xavier J.C., Clarke M.R., Magalhães M.C., et al. 2007. Current status of using beaks to identify cephalopods: III International Workshop and training course on Cephalopod beaks, Faial Island, Azores. Arquipélago 24: 41-48.

Xavier J.C., Phillips R.A., Cherel Y. 2011. Cephalopods in marine predator diet assessments: why identifying upper and lower beaks is important. ICES J. Mar. Sci. 68(9): 1857-1864. http://dx.doi.org/10.1093/icesjms/fsr103

Yatsu A. 2000. Age estimation of four oceanic squids, Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis, and Illex argentinus (Cephalopoda, Ommastrephidae) based on statolith Microstructure. Jpn. Agri. Res. Quart. 34: 75-80.

Yatsu A., Mori J. 2000. Early growth of the autumn cohort of neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fish. Res. 45: 189-194. http://dx.doi.org/10.1016/S0165-7836(99)00112-5

Yatsu A., Midorikawa S., Shimada T., et al. 1997. Age and growth of the neon flying squid, Ommastrephes bartrami, in the North Pacific Ocean. Fish. Res. 29: 257-270 http://dx.doi.org/10.1016/S0165-7836(96)00541-3

Yatsu A., Tanaka H., Mori J. 1998a. Population structure of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: Okutani T. (ed.), Contributed Papers to International Symposium on Large Pelagic Squids. Japan Marine Fisher Resources Research Center, Tokyo, pp. 31-48.

Yatsu A., Mochioka N., Morishita K., et al. 1998b. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartrami (Cephalopoda) in the North Pacific Ocean. Mar. Biol. 131: 275-282. http://dx.doi.org/10.1007/s002270050320

Published

2014-06-30

How to Cite

1.
Fang Z, Liu B, Li J, Su H, Chen X. Stock identification of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean on the basis of beak and statolith morphology. Sci. mar. [Internet]. 2014Jun.30 [cited 2024Apr.18];78(2):239-48. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1535

Issue

Section

Articles

Most read articles by the same author(s)