sm78n2-3882.html

Species richness and distribution patterns of echinoderms in the southwestern Atlantic Ocean (34-56°S)

Valeria Souto 1,2, Mariana Escolar 2, Gabriel Genzano 1, Claudia Bremec 1,2

1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, 1033AAj, Buenos Aires, Argentina. Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP).
2 Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo 1, B7602HSA, Mar del Plata, Argentina. E-mail: valeriasouto@inidep.edu.ar

Summary: The aim of this study was to compile and analyse available historical information on echinoderms in the southwestern Atlantic Ocean in order to make a synthesis of present taxonomical knowledge, to identify patterns of geographical distribution of echinoderm assemblages and to test the validity of the current zoogeographic scheme for this group. This study was conducted on the Argentinean continental shelf, southwestern Atlantic Ocean (34-56°S). An intensive research on geo-referenced data was carried out to make a knowledge synthesis on echinoderm species and thus create a historical database. Multivariate analysis was used to analyse the faunal composition through latitudinal and bathymetric gradients as well as echinoderm associations. The results confirmed the existence of two faunal associations that correspond to the traditional zoogeographic scheme established for the Argentine Sea: the Argentinean and Magellan Provinces. The Argentinean Province had 46 widely distributed species. Of the 86 species recorded in the Magellan Province, a high percentage (25%) were also found in Antarctic waters, suggesting a strong connection between the echinoderm fauna of this province and the Antarctic Region. The species richness between 34 and 56°S in the Atlantic Ocean showed a significant increase in reference to latitude, with the highest values being recorded between 46 and 56°S. In view of the high percentage of shared species with Antarctica, considered a hot-spot region in terms of echinoderm diversity, the pattern of distribution of species richness observed in our study area could correspond to a dispersion of this species from Antarctic to sub-Antarctic regions.

Keywords: biodiversity, biogeography, distribution patterns, echinoderm, species richness, southwestern Atlantic.

Riqueza específica y patrones de distribución de equinodermos en el Atlántico Sudoccidental entre los 34 y 56ºS

Resumen: El objetivo de este estudio es recopilar y analizar la información histórica disponible sobre equinodermos en el Atlántico Sudoccidental, a fin de elaborar una síntesis del estado de conocimiento actual, identificar patrones de distribución geográfica de las comunidades de equinodermos y poner a prueba la validez del esquema zoogeográfico tradicionalmente establecido para el área de estudio. Este estudio se llevó a cabo en la Plataforma Continental Argentina entre los 34 y 56°S. Se efectuó una intensiva búsqueda de datos geo-referenciados sobre las especies de equinodermos, a fin de crear una base de datos histórica. Se utilizaron análisis multivariados para analizar cambios en la composición específica a través de gradientes latitudinales y batimétricos, así como también para reconocer y diferenciar las asociaciones de equinodermos en el área de estudio. Los resultados confirmaron la existencia de dos asociaciones faunísticas que responden al esquema zoogeográfico tradicionalmente establecido para el área de estudio, distinguiendo dos Provincias Biogeográficas: Argentina y Magallánica. La Provincia Argentina presentó cuarenta y seis especies ampliamente distribuidas. Ochenta y seis especies fueron registradas en la Provincia Magallánica, un alto porcentaje de las mismas también se encontraron en aguas de la Antártida (25%), lo que sugiere una fuerte conexión entre la fauna de equinodermos entre esta provincia y la Región Antártica. La riqueza de especies entre los 34 y 56°S en el Océano Atlántico mostró un aumento significativo en referencia a la latitud, los valores más altos se registraron entre los 46 y 56°S. En vista del alto porcentaje de especies compartidas con la Antártida, considerada una región con una diversidad muy alta de equinodermos, el patrón de distribución de la riqueza de especies observado en el área de estudio podría responder a una dispersión de especies antárticas hacia aguas subantárticas.

Palabras clave: biodiversidad; biogeografía; patrones de distribución: equinodermos; riqueza específica; Atlántico Sudoccidental.

Citation/Como citar este artículo: Souto V., Escolar M., Genzano G., Bremec C. 2014. Species richness and distribution patterns of echinoderms in the southwestern Atlantic Ocean (34-56°S). Sci. Mar. 78(2): 269-280. doi: http://dx.doi.org/10.3989/scimar.03882.26B

Editor: W.E. Arntz.

Received: May 7, 2013. Accepted: January 27, 2014. Published: May 26, 2014.

Copyright: © 2014 CSIC. This is an open-access article distributed under the Creative Commons Attribution-Non Commercial Lisence (by-nc) Spain 3.0.

Contents

Summary
Resumen
Introduction
Materials and methods
Results
Discussion
Acknowledgements
References

IntroductionTop

Echinoderms are benthic marine invertebrates widely distributed throughout the world ocean. In southern South America, this group was early studied by L. Feuillée at the beginning of 1770 (Larraín 1995Larraín A. 1995. Biodiversidad de equinodermos chilenos: Estado actual del conocimiento y sinopsis biosistemática. Gayana Zool. 59: 73-96.); during the following centuries, most information from the Atlantic Ocean was produced on the basis of material collected by HMS Challenger (1873-1876) and RV Discovery (1925-1936) (Mortensen 1936Mortensen T. 1936. Echinoidea and Ophiuroidea. Discovery Reports XII: 109-348., Fisher 1940Fisher W.K. 1940. Asteroidea. Discovery Reports XX: 69-306.). The early work on taxonomy and biology of echinoderms of the Argentine Sea are contributions about echinoids, asteroids and ophiuroids of southern South America (Bernasconi 1947Bernasconi I. 1947. Distribución geográfica de los Equinoideos argentinos. An. Soc. Argent. Est. Geog. 8: 97-114., 1964aBernasconi I. 1964a. Asteroideos argentinos. Claves para los órdenes, familias, subfamilias y géneros. Physis 24: 241-277.,bBernasconi I. 1964b. Asteroideos argentinos V. Familia Ganeriidae. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Zo. 9: 59-89.,cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50., Bernasconi and D'Agostino 1977Bernasconi I., D’Agostino M. 1977. Ofiuroideos del mar epicontinental argentino. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 65-123.). More recently, inventories have been developed in north Patagonian gulfs (Zaixso and Lizarralde 2000Zaixso H.E., Lizarralde Z. 2000. Distribución de equinodermos en el golfo San José y sur del golfo San Matías (Chubut, Argentina). Rev. Biol. Mar. Oceanogr. 35: 127-145.) and in the Straits of Magellan (Larraín et al. 1999Larraín A., Mutschke E., Riveros A. et al. 1999. Preliminary report on Echinoidea and Asteroidea (Echinodermata) of the Joint Chilean-German-Italian Magellan “Victor Hensen” Campaign, 17 October - 25 November 1994. Sci. Mar. 63: 433-438., Mutschke and Ríos 2006Mutschke E., Ríos C. 2006. Distribución espacial y abundancia relativa de los equinodermos en el Estrecho de Magallanes, Chile. Cienc. Tecnol. Mar. (Valpso) 29: 91-102.), which provide lists of species of echinoderms collected in particular environments. Other contributions have shown the distribution patterns of the most conspicuous species in large Atlantic shelf areas, between 26 and 38°S (Tommasi et al. 1988aTommasi L.R., de Castro S.M., de Sousa E. 1988a. Echinodermata coletados durante as campanhas oceanograficas do N/Oc. “Almirante Saldanha” no Atlantico sul occidental. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 21, 11 pp.,bTommasi L.R., Cernea M., Condeixa M. 1988b. Equinodermes coletados pelo N/Oc. “Almirante Saldanha”, entre 26°59’S e 38° 39’S. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 22, 11 pp.), and along the shelf break frontal area, between 36 and 43°S (Escolar 2010Escolar M. 2010. Variaciones espacio-temporales en la comunidad de invertebrados bentónicos asociada al frente de talud. Equinodermos como caso de estudio. PhD Thesis. Univ. Buenos Aires, Argentina, 189 pp.).

The assessment of biodiversity in terms of species richness in marine systems is important to understand the ecological patterns of species distribution as well as the functioning of ecosystems, and to manage the use of marine resources and the identification of priorities for conservation (Gray 2001Gray J. 2001. Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol. 24: 633-641.). Anthropogenic impacts and the need for systematic conservation planning have prompted further analyses of the patterns of diversity (Worm et al. 2006Worm B., Barbier E., Beaumont N. et al. 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314: 787-790.).

The current zoogeographic scheme established for the southwestern Atlantic between 34 and 56°S, with the Argentine and Magellan Provinces (Balech 1954Balech E. 1954. División zoogeográfica del litoral sudamericano. Rev. Biol. Mar. 4: 184-195.), has been confirmed for various groups of invertebrates in recent work on amphipods (López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.), hydroids (Genzano et al. 2009Genzano G.N., Giberto D., Schejter L. et al. 2009. Hydroid assemblages from the South-western Atlantic Ocean (34-42°S). Mar. Ecol. 30: 33-46.) and polychaetes (Bremec et al. 2010aBremec C., Souto V., Genzano G. 2010a. Polychaete assemblages in SW Atlantic: Results of “Shinkai Maru” IV, V, X and XI (1978-1979) cruises in Patagonia and Buenos Aires. An. Inst. Patagon. (Chile) 38: 47-57.). In the case of echinoderms, a great biodiversity is found in the Argentine Sea. Most echinoderm species are distributed from southern Brazil and Uruguay to the Province of Buenos Aires in Argentina, or belong to the sub-Antarctic fauna that can reach southern Uruguay (Brogger et al. 2013Brogger M., Gil D., Rubilar T. et al. 2013. Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In Alvarado J., Solís-Marín F.A. (eds), Echinoderm Research and Diversity in Latin America. Springer-Verlag, Berlin Heidelberg, pp. 359-402.). However, knowledge of the taxonomy, ecology and biogeography of echinoderms on the Argentinean continental shelf is still incomplete.

The aim of this study was to compile and analyse available historical information on echinoderms in the southwestern Atlantic, in order to make a synthesis of present taxonomical knowledge and to identify patterns of geographical distribution. A database with geo-referenced records of echinoderm species that covers the Argentinean and Uruguayan continental shelves was used for the first time to test the validity of the current zoogeographical scheme.

Materials and Methods Top

Study area

This study was conducted on literature dealing with the area between 34 and 56°S and between the coastline and 50°W. The Argentinean continental shelf is characterized by the presence of two large water masses: a sub-Antarctic mass (the Malvinas Current) and a sub-tropical mass (the Brazil Current). The Malvinas current has a high primary productivity, and is a northward-running branch of the Subantarctic Cabo de Hornos Current, which has an influence on coastal and offshore areas. As it moves northward, the Malvinas Current is separate from the coast and affects only offshore waters. Mean temperature ranges yearly from 4 to 11°C. Salinity ranges yearly from 33.8 to 34.4. The Brazil Current is a branch of the South Equatorial Current; it moves from north to south along the Brazilian coast and reaches the coast of Buenos Aires. This water mass is less productive than the Malvinas Current; its mean temperature ranges yearly from 14 to 25°C, and its salinity from 35 to 35.5. The Brazil and Malvinas Currents meet at the subtropical convergence approximately at 35°S (Boltovskoy 1981Boltovskoy E. 1981. Masas de agua en el Atlántico Sudoccidental. Atlas del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Publ. Espec. INIDEP, Mar del Plata, 10 pp., Bastida et al. 1992Bastida R., Roux A., Martínez D. 1992. Benthic communities of the Argentine continental shelf. Oceanol. Acta 15: 687-698.).

The whole study area was divided into a 1° square grid. The squares were numbered from west to east and from north to south, following a procedure applied for the study of other groups of benthic invertebrates (see López Gappa 2000López Gappa J. 2000. Species richness of marine Bryozoa in the continental shelf and slope off Argentina (South-West Atlantic). Diversity Distrib. 6: 15-27., López Gappa and Landoni 2005López Gappa J., Landoni N. 2005. Biodiversity of Porifera in the Southwest Atlantic between 35° and 56°S. Rev. Mus. Argent. Cient. Nat. 7: 191-219., Montiel et al. 2005Montiel A., Gerdes D., Arntz W.E. 2005. Distributional patterns of shallow-waters polychaetes in the Magellan Region: a zoogeographical and ecological synopsis. Sci. Mar. 69: 123-133., López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66. and Genzano et al. 2009Genzano G.N., Giberto D., Schejter L. et al. 2009. Hydroid assemblages from the South-western Atlantic Ocean (34-42°S). Mar. Ecol. 30: 33-46.).

Database

An intensive search of geo-referenced data was carried out on the available literature to make a synthesis of taxonomic and distributional knowledge on echinoderms in order to create a historical database. Only data of presence and absence of species were used. We used taxonomic papers and other works published by specialists up to 2005. Valid species showing inaccurate locations, named in a single paper or found in a single location were excluded from the analyses.

Data processing

Spatial distribution of species richness

The study area was divided into degrees of latitude (34-56°S) and species richness and the number of sampling stations/coastal localities were estimated for each latitude. A correlation (Spearman rank correlation coefficient) was made between the two variables (López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.). If this correlation was significant, the number of species per oceanographic station/coastal locality was calculated for each degree of latitude in the study area. Then, the Spearman rank correlation coefficient was calculated again between the new variable (number of species per oceanographic station/coastal locality) and latitude.

Species composition through latitudinal and bathymetric ranges

The study area was divided into 12 areas (A-L) to evaluate the faunal composition of echinoderms through latitudinal and bathymetric gradients. The study area was also divided into four latitudinal bands according to different oceanographic and geophysical features:

1) Off Buenos Aires (34-41°S). This region contains the subtropical/sub-Antarctic zone convergence, which is a product of the mixture of subtropical waters coming from the north, and sub-Antarctic waters. This convergence forms an area with specific oceanographic features, which is considered a transition area (Acha et al. 2004Acha E.M., Mianzan H.W., Guerrero R.A. et al. 2004. Marine fronts at the continental shelves of austral South America. Physical and Ecological processes. J. Mar. Syst. 44: 83-105.). This region also contains the Río de la Plata system, considered an important biogeographical barrier to many species.

2) Off Río Negro and Chubut (41-46°S). The Valdes Peninsula tidal front develops in this sector.

3) Off Santa Cruz (46-51°S). This area is characterized by low-salinity waters due to the discharge of continental waters and is also influenced by the contribution of Pacific waters through the Strait of Le Maire.

4) Off Tierra del Fuego and around the Malvinas Islands (51-56°S). This area receives a major contribution of continental waters that form a salinity front, and is influenced by Antarctic waters due to the proximity to the Drake Passage, the northern boundary of the Antarctic Region.

Each of these latitudinal bands was divided into three sectors in accordance with bathymetry: <50 m, 50-100 m and >100 m. 12 areas were thus obtained (Fig. 1). A matrix was made with the data of presence and absence of species contained in each of the 12 areas. An analysis of similarities (ANOSIM) was carried out (PRIMER 6.0, licensed software) to test the null hypothesis of no difference in species composition among the 12 areas (Clarke 1993Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143., Clarke and Warwick 2001Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth, 177 pp.).

sm3882fig1.jpg

Full size image

Fig. 1. – Study area showing the division into 12 zones used to analyse echinoderm species composition through latitudinal (34-56°S) and bathymetric ranges (0-3500 m).

Species assemblages

In order to analyse the echinoderm associations in the study area, multivariate analyses (Clarke 1993Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143., Clarke and Warwick 2001Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth, 177 pp.) (PRIMER 6.0, licensed software) were applied. We performed a cluster analysis among squares, using the Bray-Curtis similarity measures based on presence/absence data. A SIMPROF analysis was used to test whether the groups were significantly different. We applied the test of similarity percentage (SIMPER) to determine the contribution of each species to the similarity/dissimilarity within the group of squares. Finally, an ANOSIM among squares located in the Argentine Province (depths less than 60 m, between 35 and 42°S) and the Magellan Province (other squares) was performed to test the null hypothesis of no difference in species composition between the two biogeographic provinces traditionally established for the study area.

Results

A total of 110 species of echinoderms distributed in 5 classes, 16 orders and 37 families were recorded in the study area (Appendix 1) according to the information available in 36 taxonomic and other published works up to 2005 (Appendix 2). Twenty species were not considered because of inaccurate locations, presence in only one location or only one report. Therefore, a matrix of 152 squares for 90 species was used in the analysis. The geographical coverage of sampling fully covers the study area, but there were areas with higher sampling intensity such as the coast of Uruguay, Buenos Aires, Chubut, Tierra del Fuego and the Malvinas Islands (Fig. 2).

sm3882fig2.jpg

Full size image

Fig. 2. – Spatial distribution and coverage of sampling effort per square (1×1°) in the study area, between 34 and 56°S.

The class Asteroidea presented the highest species richness (47 species) representing over 50% of the total; the species richness in Ophiuroidea, Echinoidea and Holothuroidea was 18, 11 and 14 species, respectively.

Spatial distribution of species richness

Given that species richness was biased by the sampling effort (Spearman rank correlation, N=22, R=0.618, P<0.01) the variable “number of species per oceanographic station/coastal locality” was used to analyse the relationship between richness and latitude. This correlation was positive (Spearman rank correlation, N=22, R=0.589, P<0.01) and the highest values were recorded between 47 and 55°S (Fig. 3).

sm3882fig3.jpg

Full size image

Fig. 3. – Relationship between latitude (S) and number of echinoderm species per oceanographic station/coastal locality in the study area.

Species composition through latitudinal and bathymetric ranges

The multidimensional scaling (MDS) showed a spatial separation between those areas further south and deeper than 100 m (C, F, I, J, K and L) and areas located between 34 and 51°S at depths less than 100 m (A, B, D and H) (Fig. 4). Moreover, the comparison in pairs was significantly different between Area A vs. I (ANOSIM, R=0.535, P=0.01), A vs. L (ANOSIM, R=0.422, P=0.01), C vs. E (ANOSIM, R=0.358, P=0.01) and D vs. F (ANOSIM, R=0.629, P=0.01). Area G was not included in this analysis because it contained only a single square in which echinoderms were reported.

sm3882fig4.jpg

Full size image

Fig. 4. – Multidimensional analysis (MDS) between 12 areas through latitudinal and bathymetric ranges based on presence and absence data of echinoderms.

Species assemblages

The cluster analysis indicated two main groups (group 1 and group 2) and two small groups of a few squares, mostly covering coastal waters between 34 and 42°S (Uruguay and Buenos Aires) and between 48 and 55°S (Patagonia) (Fig. 5A). There was an average dissimilarity equal to 88% between groups 1 and 2; the contribution of each of the species included in the study can be found in Table 1 (SIMPER test, presence-absence data). Group 1 (21% internal similarity) was composed of 90 squares occupying mainly shelf areas: between 34 and 48°S at depths greater than 50 m and between 48 and 55°S from shallow to deeper waters (Fig. 5B). In this sector, 86 species of echinoderms were registered, 48% exclusive. The species that most contributed to internal similarity of the group were Ctenodiscus australis, Ophiactis asperula, Odontaster penicillatus, Ophiocten amitinum, Austrocidaris canaliculata, Sterechinus agassizii, Ophiacantha vivipara, Tripylaster phillippi, Acodontaster e. granuliferus, Labidiaster radiosus, Astrotoma agassizii and Gorgonocephalus chilensis. Group 2 (27% internal similarity) was composed of 21 squares encompassing coastal and relatively shallow shelf areas, between 34 and 48°S and in general at depths of less than 60 m (Fig. 5). In this sector, 48 species of echinoderms were recorded. The most frequent species of this assemblage were Pseudechinus magellanicus, Arbacia dufresnii, Amphiura eugeniae, Cycethra verrucosa, Hemioedema spectabilis, Encope emarginata, Porianopsis mira, Cosmasterias lurida, Astropecten b. brasiliensis, Cladodactyla crocea, Pentamera chiloensis and Chiridota pisanii (Table 1).

sm3882fig5.jpg

Full size image

Fig. 5. – Echinoderm assemblages. A, SIMPROF analysis between squares. Values in the dendrogram show the significance in the formation of groups; and B, Geographic distribution in the study area. Group 1, dark grey squares; Group 2, light grey squares; coastal Buenos Aires and Uruguay, dashed circles; coastal Patagonia, white circles.

Table 1. – SIMPER analysis results for the data of presence/absence of echinoderm species per square between groups 1 and 2 obtained with cluster analysis. Species are listed according to their contribution to the dissimilarity between groups. Av. Abund., average abundance; Av. Diss., average dissimilarity; Diss/SD, dissimilarity/standard deviation; Contrib.%, percentage of contribution; Cum.%, cumulative percentage.

Species Av. Abund. G1 Av. Abund. G2 Av. Diss. Diss/SD Contrib.% Cum.%
Ctenodiscus australis 0.71 0.14 5.48 0.87 6.24 6.24
Pseudechinus magellanicus 0.25 0.73 4.87 0.82 5.54 11.78
Amphiura eugeniae 0.11 0.64 3.86 0.85 4.4 16.18
Arbacia dufresni 0.13 0.59 3.82 0.81 4.35 20.53
Cycethra verrucosa 0.26 0.41 3.21 0.66 3.65 24.18
Ophiactis asperula 0.43 0.45 3.1 0.82 3.53 27.71
Austrocidaris canaliculata 0.34 0.36 2.69 0.75 3.07 30.78
Sterechinus agassizii 0.29 0.23 2.54 0.64 2.9 33.68
Henricia obesa 0.22 0.36 2.5 0.65 2.85 36.52
Hemioedema spectabilis 0.05 0.45 2.42 0.76 2.75 39.27
Odontaster penicillatus 0.33 0.14 2.36 0.63 2.69 41.96
Encope emarginata 0.03 0.41 2.23 0.68 2.54 44.5
Tripylaster philippii 0.22 0.18 2.02 0.53 2.31 46.81
Ophiocten amitinum 0.3 0.05 1.99 0.57 2.27 49.08
Ophiomyxa vivipara 0 0.41 1.86 0.76 2.12 51.2
Porianiopsis mira 0.01 0.36 1.71 0.7 1.95 53.15
Astropecten b. brasiliensis 0.02 0.18 1.62 0.39 1.85 54.99
Ophiacanta vivipara 0.28 0.05 1.6 0.55 1.82 56.81
Diplopteraster verrucosus 0.12 0.23 1.55 0.54 1.76 58.58
Diplasterias brandti 0.23 0.14 1.53 0.58 1.74 60.32
Acodontaster e. granulíferus 0.27 0 1.45 0.49 1.65 61.97
Cosmasterias lurida 0.03 0.23 1.38 0.47 1.57 63.54
Cladodactyla crocea 0.06 0.23 1.3 0.48 1.48 65.02
Labidiaster radiosus 0.21 0 1.25 0.4 1.42 66.45
Chiridota pisanii 0.03 0.27 1.22 0.59 1.39 67.84
Bathybiaster loripes 0.07 0.09 1.13 0.36 1.28 69.12
Astrotoma agassizii 0.19 0 1.11 0.41 1.26 70.38
Pseudocnus dubiosus leoninus 0.09 0.18 1.07 0.5 1.22 71.6
Gorgonocephalus chilensis 0.18 0.05 1.07 0.44 1.22 72.82
Ceramaster patagonicus 0.14 0 0.98 0.34 1.12 73.94
Ganeria hahni 0.04 0.18 0.95 0.41 1.08 75.02
Trachythyone parva 0.15 0 0.89 0.37 1.02 76.04
Diplopteraster clarki 0.09 0.05 0.87 0.31 0.99 77.02
Pteraster stellifer 0.13 0 0.83 0.34 0.95 77.97
Abatus philippii 0.09 0 0.81 0.27 0.92 78.89
Cycethra verrucosa verrucosa 0.04 0.14 0.8 0.41 0.92 79.81
Ophiura lymani 0.14 0 0.8 0.33 0.91 80.72
Ophioplocus januarii 0 0.18 0.79 0.44 0.9 81.62
Ophioplinthus inornata 0.11 0 0.75 0.26 0.86 82.48
Trachythyone peruana 0.11 0 0.68 0.31 0.78 83.26
Luidia ludwigi scotti 0.02 0.05 0.67 0.21 0.77 84.03
Pteraster affinis lebruni 0.12 0 0.64 0.34 0.72 84.75
Anasterias antarctica 0.07 0.05 0.59 0.31 0.67 85.42
Henricia studeri 0.09 0 0.57 0.27 0.65 86.08
Anasterias pedicellaris 0.08 0.05 0.57 0.32 0.64 86.72
Pentamera chiloensis 0.01 0.14 0.56 0.4 0.64 87.36
Amphiodia planispina 0.02 0.09 0.56 0.31 0.64 88
Pseudocnus perrieri 0.11 0 0.56 0.32 0.64 88.64
Amphiura princeps 0.01 0.14 0.55 0.4 0.62 89.27
Ophiochondrus stelliger 0.08 0 0.55 0.27 0.62 89.89
Lophaster stellans 0.08 0 0.5 0.27 0.57 90.46
Abatus cavernosus 0.07 0.05 0.5 0.31 0.57 91.03
Porania (Porania) antarctica magellanica 0.1 0 0.47 0.3 0.53 91.56
Asterina stellifera 0 0.09 0.46 0.3 0.52 92.09
Amphiura magellanica 0.05 0.05 0.46 0.27 0.52 92.61
Amphioplus albidus 0.04 0.05 0.45 0.24 0.51 93.12
Ganeria falklandica 0.01 0.09 0.42 0.32 0.48 93.6
Taeniogyrus contortus 0.04 0.05 0.42 0.25 0.47 94.07

The results of the ANOSIM analysis between squares from the Argentinean and Magellan Provinces showed significant differences in the echinoderm species composition (global R=0.339, P=0.01), and lead to the rejection of our null hypothesis.

DiscussionTop

We analysed the presence and distribution of 110 species of echinoderms, distributed in 5 classes, 16 orders and 37 families in the southwestern Atlantic. However, our analyses were performed with the most frequent species (N=90), in agreement with Brogger et al. (2013)Brogger M., Gil D., Rubilar T. et al. 2013. Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In Alvarado J., Solís-Marín F.A. (eds), Echinoderm Research and Diversity in Latin America. Springer-Verlag, Berlin Heidelberg, pp. 359-402. in a recent contribution. It is interesting to point out that Crinoidea Antedonidae were early reported by Mortensen (1917Mortensen T. 1917. The Crinoidea of the Swedish Antarctic Expedition. Wiss Ergebn. Schwed. Südpolar Exp. 8: 10-15., 1920)Mortensen T. 1920. The Crinoidea. Wiss Ergebn Schwed Südpolar Exp 6: 1-24. and Bremec et al. (2010b)Bremec C., Marecos A., Escolar M. et al. 2010b. Riqueza específica en los bancos comerciales de vieira patagónica (Zygochlamys patagonica) a lo largo del frente de talud. Período 2009. Inf. Invest. INIDEP, 22, 18 pp. on the Argentinean slope, but excluded in this study due to their scarcity.

A biased distribution of the sampling effort occurred in the study area, a fact already reported for other groups of benthic invertebrates in the Argentine Sea (López Gappa 2000López Gappa J. 2000. Species richness of marine Bryozoa in the continental shelf and slope off Argentina (South-West Atlantic). Diversity Distrib. 6: 15-27., López Gappa and Landoni 2005López Gappa J., Landoni N. 2005. Biodiversity of Porifera in the Southwest Atlantic between 35° and 56°S. Rev. Mus. Argent. Cient. Nat. 7: 191-219., López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.). Although geographic coverage of historical sampling is wide, certain coastal areas have been sampled more intensively than others; this was the case of coastal bottoms of Uruguay, Buenos Aires, Chubut, Tierra del Fuego and the Malvinas Islands, where the number of species found could be a good estimation of species richness.

The latitudinal gradient in species richness is largely documented in both terrestrial and marine environments (Brown and Lomolino 1998Brown J.H., Lomolino M.V. 1998. Biogeography, 2nd edn. Sinauer, Sunderland.). The most clearly observed pattern occurs in the northern hemisphere, with the highest richness in the tropics and decreasing towards the polar regions (Roy et al. 1998Roy K., Jablonski D., Valentine J. et al. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. PNAS. 95: 3699-3702., Crame 2000Crame J.A. 2000. Evolution of taxonomic Diversity gradients in the marine realm: evidence from the composition of recent bivalve faunas. Paleobiology 26: 188-214., Hillebrand 2004Hillebrand H. 2004. On the Generality of the Latitudinal Diversity Gradient. Am. Nat. 163: 192-211.). In the southern hemisphere, there is no clear evidence of any increase in species richness from Antarctica towards the Equator (Crame 2000Crame J.A. 2000. Evolution of taxonomic Diversity gradients in the marine realm: evidence from the composition of recent bivalve faunas. Paleobiology 26: 188-214., Valdovinos et al. 2003Valdovinos C., Navarrete S., Marquet P. 2003. Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26: 139-144., Barnes and Griffiths 2008Barnes D.K.A., Griffiths H.J. 2008. Biodiversity and biogeography of southern temperate and polar bryozoans. Glob. Ecol. Biogeogr. 17: 84-99.). The results of this study indicated that species richness of echinoderms in the southwestern Atlantic increases significantly with latitude (between 34 and 56°S); the highest species richness was observed between 46 and 56°S in the Argentine Sea. A similar pattern was observed for Bryozoa (López Gappa and Lichtschein 1988López Gappa J., Lichtschein V. 1988. Geographic distribution of bryozoans in the Argentine Sea (South-Western Atlantic). Oceanol. Acta 11: 89-99., López Gappa 2000López Gappa J. 2000. Species richness of marine Bryozoa in the continental shelf and slope off Argentina (South-West Atlantic). Diversity Distrib. 6: 15-27.), Porifera (López Gappa and Landoni 2005López Gappa J., Landoni N. 2005. Biodiversity of Porifera in the Southwest Atlantic between 35° and 56°S. Rev. Mus. Argent. Cient. Nat. 7: 191-219) and Amphipoda (López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.) in the southwestern Atlantic and for Mollusca (Valdovinos et al. 2003Valdovinos C., Navarrete S., Marquet P. 2003. Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26: 139-144.) and Polychaeta (Lancellotti and Vásquez 2000Lancellotti D., Vásquez J. 2000. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: Contribución para la conservación marina. Rev. Chil. Hist. Nat. 73: 99-129.; Hernández et al. 2005Hernández C.E., Moreno R.A., Rozbaczylo N. 2005. Biogeographical patterns and Rapoport’s rule in southeastern Pacific benthic polychaetes of the Chilean coast. Ecography 28: 363-373.) along the southeast Pacific coast. Some authors postulate that the main component that generates this asymmetry of species richness in the latitudinal pattern, in comparison with the northern hemisphere, is the high species richness in the Antarctic Region (Griffiths et al. 2009Griffiths H., Barnes D., Linse K. 2009. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 36: 162-177.). In particular, echinoderms are well represented on both sides of the Drake Passage (Arntz et al. 2005Arntz W., Thatje S., Gerdes D. et al. 2005. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci. Mar. 69(Suppl. 2): 237-269.). Antarctica is considered a “hot-spot” in terms of echinoderm diversity (O’Loughlin et al. 2011O’Loughlin P., Paulay G., Davey N. et al. 2011. The Antarctic Region as marine biodiversity hot spot for echinoderms: Diversity and diversification of sea cucumbers. Deep Sea Res. Part II, 58: 254-275.). In addition, the Antarctic Region is the centre of origin and radiation of various taxa; many species that originated in the region have been able to migrate to cold temperate waters surrounding the sub-Antarctic region (Briggs 2006Briggs J.C. 2006. Proximate sources of marine biodiversity. J. Biogeogr. 33: 1-10.).

Specific composition of echinoderms changed through the studied bathymetric gradient, the most noticeable change being registered at depths greater than 100 m.

The bathymetric distribution patterns of echinoderms have been explained by physical factors (pressure, temperature, dissolved oxygen and sediment quality) and biological factors (mode of larval dispersal, predation and intra-and inter-specific competition) (Sokolova 1972Sokolova M.N. 1972. Trophic structure of deep-sea macrobenthos. Mar. Biol. 16: 1-12., Gage and Tyler 1982Gage J., Tyler P.A. 1982. Depth-related gradients in size structure and the bathymetric zonation of deep-sea brittle stars. Mar. Biol. 71: 299-308., Ventura and Fernandes 1995Ventura C., Fernandes F. 1995. Bathymetric distribution and population size structure of paxillosid seastars (Echinodermata) in the Cabo Frío upwelling ecosystem of Brazil. Bull. Mar. Sci. 56: 268-282.), which could be modified through the bathymetric gradient. According to Iken et al. (2010)Iken K., Konar B., Benedetti-Cecchi L. et al. 2010. Large-Scale spatial distribution patterns of echinoderms in nearshore rocky habitats. PLoS One 5: e13845., the echinoderm associations could be structured by different variables; a complex framework is generated and no single variable could explain the observed patterns. In our study area, the bathymetric gradient coincides with a water temperature gradient: we found shallow and warm waters in coastal areas, which became deeper and colder as we moved forward to the shelf break. Water temperature is considered the main limiting factor in the distribution of marine species (Stuardo 1964Stuardo B. 1964. Distribución de los moluscos marinos litorales en Latinoamérica. Bol. Inst. Biol. Mar. 7: 79-91., Vannucci 1964Vannucci M. 1964. Zoogeografia marinha do Brasil. Bol. Inst. Biol. Mar. 7: 113-121., Menni et al. 2010Menni R., Jaureguizar A., Stehmann M. et al. 2010. Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity Conserv. 19: 775-796., Okolodkov 2010Okolodkov Y. 2010. Biogeografía Marina. Universidad Autónoma de Campeche. 217 pp.) and has been the basis of many discussions on the boundaries between biogeographic provinces in the southwestern Atlantic (Ekman 1953Ekman S. 1953. Zoogeography of the Sea. London, Sidwick & Jackson, 417 pp., Boltovskoy 1964Boltovskoy E. 1964. Provincias zoogeográficas de América del Sur y su sector Antárctico según los foraminíferos bentónicos. Bol. Inst. Biol. Mar. 7: 93-99.). The subtropical/sub-Antarctic convergence develops into the Argentinean Province; this mass of water is the product of the mixture of subtropical waters coming from the north transported by the Brazil Current and the sub-Antarctic waters arriving from the south carried by the Malvinas Current (Boltovskoy 1981Boltovskoy E. 1981. Masas de agua en el Atlántico Sudoccidental. Atlas del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Publ. Espec. INIDEP, Mar del Plata, 10 pp., Acha et al. 2004Acha E.M., Mianzan H.W., Guerrero R.A. et al. 2004. Marine fronts at the continental shelves of austral South America. Physical and Ecological processes. J. Mar. Syst. 44: 83-105.).

Changes in the benthic faunal composition at depths greater than 100 m on the Argentinean Continental Shelf have been reported by other authors (Bastida et al. 1992Bastida R., Roux A., Martínez D. 1992. Benthic communities of the Argentine continental shelf. Oceanol. Acta 15: 687-698., Escolar et al. 2013Escolar M., Hernández D.R., Bremec C. 2013. Latitudinal and bathymetric distribution patterns of ophiuroids (Echinodermata: Ophiuroidea) on scallop fishing grounds at the shelf-break frontal system, South-Western Atlantic. Mar. Biodiver. Rec. 6: 1-8.). These changes were explained in terms of the high productivity of the shelf break frontal system in the area, which is produced by the meeting of the sub-Antartic shelf waters and the cooler and more productive waters of the Malvinas Current (Acha et al. 2004Acha E.M., Mianzan H.W., Guerrero R.A. et al. 2004. Marine fronts at the continental shelves of austral South America. Physical and Ecological processes. J. Mar. Syst. 44: 83-105.).

The inventory and analysis of historical information about echinoderms conducted in this paper constitutes the first attempt to validate the preliminary biogeographical observations (see Bernasconi 1964cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50.) and confirms the two main zoogeographic divisions of the study area, the Argentinean and Magellan Provinces (Balech 1954Balech E. 1954. División zoogeográfica del litoral sudamericano. Rev. Biol. Mar. 4: 184-195.). The results of this study showed that the association of squares that represented the Argentinean Province was characterized by widely distributed species: there are subtropical (Asterina stellifera, Encope emarginata, Astropecten b. brasiliensis) (Tommasi 1970Tommasi L. 1970. Lista dos asteroides recentes N/Oc. “Almirante Saldanha” do Brasil. Contr. Avulsas Inst. Oceanogr. Univ. São Paulo Ser. Oceanogr. Biol. 18: 1-61., Tommasi et al. 1988aTommasi L.R., de Castro S.M., de Sousa E. 1988a. Echinodermata coletados durante as campanhas oceanograficas do N/Oc. “Almirante Saldanha” no Atlantico sul occidental. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 21, 11 pp.,bTommasi L.R., Cernea M., Condeixa M. 1988b. Equinodermes coletados pelo N/Oc. “Almirante Saldanha”, entre 26°59’S e 38° 39’S. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 22, 11 pp., Martínez 2008Martínez S. 2008. Shallow water Asteroidea and Ophiuroidea of Uruguay: composition and biogeography. Rev. Biol. Trop. 56: 205-214.) and sub-Antarctic species (Pseudechinus magellanicus, Arbacia dufresnii, Cycethra verrucosa, Porianopsis mira, Cosmasterias lurida) (Bernasconi 1947Bernasconi I. 1947. Distribución geográfica de los Equinoideos argentinos. An. Soc. Argent. Est. Geog. 8: 97-114., 1964cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50., Tommasi 1965Tommasi L. 1965. Faunistic provinces of the western South Atlantic littoral Region (summary). Anais Acad. Bras. Cienc. 37: 261-262., Escolar 2010Escolar M. 2010. Variaciones espacio-temporales en la comunidad de invertebrados bentónicos asociada al frente de talud. Equinodermos como caso de estudio. PhD Thesis. Univ. Buenos Aires, Argentina, 189 pp.). These results show that the Argentinean Province is characterized by low endemism and has high heterogeneity (Balech and Ehrlich 2008Balech E., Ehrlich M.D. 2008. Esquema biogeográfico del Mar Argentino. Rev. Invest. Desarr. Pesq. 19: 45-75.) owing to its particular hydrography, as explained above.

Our results confirm the extension of the Magellan Province towards lower latitudes. We found that typically Magellanic species such as Ctenodiscus australis, Acodontaster e. granuliferus, Austrocidaris canaliculata, Sterechinus agassizii and Tripylaster phillippi (Bernasconi 1964cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50.) extend northwards along the Malvinas current up to 36°-37°S, but always at depths greater than 100 m. Von Ihering (1927)Von Ihering H. 1927. Die geschichte des Atlantischen oceans. Gustav Fisher, Jena, 237 pp. was the first to mention the arrival of Magellanic fauna to Cabo Frio (Brazil) and several authors remark that this locality is the boundary between the Magellan and South Brazilian Provinces (Briggs 1974Briggs J.C. 1974. Marine Zoogeography. McGraw-Hill Co., New York, 475 pp., Boschi 1976Boschi E. 1976. Nuevos aportes al conocimiento de la distribución geográfica de los crustáceos decápodos del Mar Argentino. Physis 35: 59-68.). Similar results were obtained with benthic amphipods (López Gappa et al. 2006López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.).

Almost half of the 86 species recorded in the Magellan Province and also half of the 46 species recorded in the Argentinean Province were also recorded by Lancellotti and Vásquez (2000)Lancellotti D., Vásquez J. 2000. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: Contribución para la conservación marina. Rev. Chil. Hist. Nat. 73: 99-129. in Chilean waters. Pérez-Ruzafa et al. (2013)Pérez-Ruzafa A., Alvarado J.J., Solís-Marín F.A. et al. 2013. Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities. In Alvarado J., Solís-Marín F.A. (eds), Echinoderm Research and Diversity in Latin America. Springer-Verlag, Berlin Heidelberg, pp. 511-542. found that echinoderm fauna from Chile is more closely related to Argentina than to Peru. In fact, they established two biogeographical provinces, the Peru-Chilean and the South American or Magellan Provinces. This continuum in the distribution of species between the Pacific and Atlantic Oceans has been found in various groups of marine organisms, and is the main reason for asserting that the Magellan Province extends south from 40º-41ºS in the Pacific Ocean to approximately 30º-31°S in the Atlantic Ocean (Balech 1954Balech E. 1954. División zoogeográfica del litoral sudamericano. Rev. Biol. Mar. 4: 184-195., Briggs 1974Briggs J.C. 1974. Marine Zoogeography. McGraw-Hill Co., New York, 475 pp.). Several authors postulate that the opening of the Strait of Magellan 7000 years ago played an important role in the distribution and dispersal of species to create a corridor for the exchange of faunal elements between the two oceans (McCulloch and Davies 2001McCulloch R., Davies S. 2001. Late-glacial and holocene palaeoenvironmental change in the central Strait of Magellan, southern Patagonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173: 143-173., Montiel et al. 2005Montiel A., Gerdes D., Arntz W.E. 2005. Distributional patterns of shallow-waters polychaetes in the Magellan Region: a zoogeographical and ecological synopsis. Sci. Mar. 69: 123-133.). In contrast, a low similarity (only 7%) was found between the echinoderm fauna from southern Brazil and the Magellan Province; Barboza et al. (2011)Barboza C., Bendayan de Moura R., Monnerat Lana A. et al. 2011. Echinoderms as clues to Antarctic - South American connectivity. Oecologia Australis 15: 86-110. postulated that this result suggests a clear turnover of species from the subtropical Brazil towards temperate areas, mainly at Uruguayan latitudes.

The 25% of the echinoderm species recorded in the Magellan Province in this study were registered in Antarctic waters by Bernasconi 1959Bernasconi I. 1959. Algunos asteroideos de Antártida. Contrib. Cient. Inst. Antart. Argent. 1: 2-22., 1964cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50., 1979Bernasconi I. 1979. Asteriidae, Cosconasteriinae de la Argentina y Antártida. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 241-249., Bernasconi and D’Agostino 1978Bernasconi I., D'Agostino M. 1978. Equinodermos Antárcticos III. Ofiuroideos de Sandwich del Sur y Georgias del Sur. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 203-222., Dahm 1999Dahm C. 1999. Ophiuroids (Echinodermata) of southern Chile and the Antarctic: Taxonomy, biomass, diet and growth of dominant species. Sci. Mar. 63: 427-432., Manjón-Cabeza and Ramos 2003Manjón-Cabeza M., Ramos A. 2003. Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula Region. Polar Biol. 26: 691-699., Chiantore et al. 2006Chiantore M., Guidetti M., Cavallero M. et al. 2006. Sea urchins, sea stars and brittle stars from Terra Nova bay (Ross Sea, Antarctica). Polar Biol. 29: 467-475., De Domenico et al. 2006De Domenico F., Chiantore M., Buongiovanni, S. et al. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land Coast, Ross Sea, Antarctica. Antarc. Sci. 18: 655-662., O’Loughlin et al. 2011O’Loughlin P., Paulay G., Davey N. et al. 2011. The Antarctic Region as marine biodiversity hot spot for echinoderms: Diversity and diversification of sea cucumbers. Deep Sea Res. Part II, 58: 254-275.. These results confirm that there is a high degree of affinity between Antarctic and sub-Antartic echinoderm fauna previously mentioned by Barboza et al. (2011)Barboza C., Bendayan de Moura R., Monnerat Lana A. et al. 2011. Echinoderms as clues to Antarctic - South American connectivity. Oecologia Australis 15: 86-110.. The faunal connection between the sub-Antarctic Region of the Magellan Province and the Antarctic Region has also been reported for various groups of benthic invertebrates (Barnes and De Grave 2000Barnes D.K., De Grave S. 2000. Biogeography of Southern Ocean bryozoans. Vie Milieu. 50: 261-273., Montiel et al. 2005Montiel A., Gerdes D., Arntz W.E. 2005. Distributional patterns of shallow-waters polychaetes in the Magellan Region: a zoogeographical and ecological synopsis. Sci. Mar. 69: 123-133., Rodríguez et al. 2007Rodríguez E., López-González P., Gili J. 2007. Biogeography of Antarctic sea anemones (Anthozoa, Actiniaria): What do they tell us about the origin of the Antarctic benthic fauna? Deep-Sea Res. Part II. 54: 1876-1904.). The presence of species on both sides of the Drake Passage provides strong evidence to confirm the faunal exchange between the Magellan Province and the Antarctic Region; therefore, it was inferred that the Polar Front is not a strict barrier to dispersion of many species of benthic invertebrates (Arntz and Brey 2003Arntz W., Brey T. 2003. The expedition ANTARKTIS XIX/5 (LAMPOS) of RV "Polarstern" in 2002. Ber. Polarforsch. Meeresforsch. 462: 1-120., Montiel et al. 2005Montiel A., Gerdes D., Arntz W.E. 2005. Distributional patterns of shallow-waters polychaetes in the Magellan Region: a zoogeographical and ecological synopsis. Sci. Mar. 69: 123-133.).

It has been stated that echinoderm species could migrate from the Magellan Province through the Malvinas Plateau and shallow seas, following the arc of southern islands (the Scotia Arc) to reach the Antarctic: examples are Cycethra verrucosa, Anasterias antarctica, Arbacia dufresnii, Pseudechinus magellanicus (Bernasconi 1964cBernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50.). The same pattern but in the opposite direction was reported by Hedgpeth (1969)Hedgpeth J.W. 1969. Introduction to Antarctic zoogeography: Distribution of selected groups of marine invertebrates in waters south of 35ºS latitude. In: Bushnell V.C., Hedgpeth J.W. (eds), Antarctic Map Folio Series, American Geographical Society, New York, pp. 11: 1-9. for several species of Antarctic ophiuroids, such as Astrotoma agassizii, species with circumpolar Antarctic and sub-Antarctic distribution and with a wide dispersion northwards. Bernasconi and D’Agostino (1974)Bernasconi I., D’Agostino M. 1974. Ampliación de la Zona de distribución de Amphiura crassipes Ljungman, 1867 (Ophiuroidea, Amphiuridae). Physis 33: 135-138. found this species at the northern end of the Antarctic Peninsula, South Georgia, Burdwood Bank and the Malvinas Islands, reaching 42°S in the Pacific Ocean and 39°S in the Atlantic Ocean). Hedgpeth (1969)Hedgpeth J.W. 1969. Introduction to Antarctic zoogeography: Distribution of selected groups of marine invertebrates in waters south of 35ºS latitude. In: Bushnell V.C., Hedgpeth J.W. (eds), Antarctic Map Folio Series, American Geographical Society, New York, pp. 11: 1-9. also mention that the range of distribution of ophiuroids is controlled by depth, so the routes through shallow waters (Scotia Arc) have been of great importance in the spread of this and other classes of echinoderms.

Our results are in agreement with theories that attempt to explain the observed faunal affinities between Antarctica and South America, giving importance to the connection through the Scotia Arc (Arntz et al. 2005Arntz W., Thatje S., Gerdes D. et al. 2005. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci. Mar. 69(Suppl. 2): 237-269., Moyano 2005Moyano H. 2005. Scotia Arc bryozoans from the LAMPOS expedition: a narrow bridge between two different faunas. Sci. Mar. 69: 103-112.) and to the Antarctic Circumpolar Current and Antarctic Coastal Current in the case of echinoderms (Pawson 1969Pawson D. 1969. Holothuroidea fron Chile. Rep Nº 46 Lund Univ. Chile Exped. 1948-1949. Sarsia 38: 121-145., Díaz et al. 2006Díaz A., Palma A., Feral J. et al. 2006. Phylogeography of Sterechinus sea urchins in the Southern Ocean: a Antarctic and Subantarctic two-ring model. II Simposio Latinoamericano sobre Investigaciones Antárticas, 16-18 Agosto 2006, Concepción, Chile.).

Acknowledgements

We are grateful to Dr. Ana Roux for providing data collected during the cruises of FV Shinkai Maru (1978-1979). This is INIDEP Contribution N° 1862. Financial support was received from PICT 2007-02200 and EXA-UNMdP 546. V.S. is supported by a CONICET Doctoral Fellowship.

References

Acha E.M., Mianzan H.W., Guerrero R.A. et al. 2004. Marine fronts at the continental shelves of austral South America. Physical and Ecological processes. J. Mar. Syst. 44: 83-105.
http://dx.doi.org/10.1016/j.jmarsys.2003.09.005

Arntz W., Brey T. 2003. The expedition ANTARKTIS XIX/5 (LAMPOS) of RV "Polarstern" in 2002. Ber. Polarforsch. Meeresforsch. 462: 1-120.

Arntz W., Thatje S., Gerdes D. et al. 2005. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci. Mar. 69(Suppl. 2): 237-269.
http://dx.doi.org/10.3989/scimar.2005.69s2237

Balech E. 1954. División zoogeográfica del litoral sudamericano. Rev. Biol. Mar. 4: 184-195.

Balech E., Ehrlich M.D. 2008. Esquema biogeográfico del Mar Argentino. Rev. Invest. Desarr. Pesq. 19: 45-75.

Barboza C., Bendayan de Moura R., Monnerat Lana A. et al. 2011. Echinoderms as clues to Antarctic - South American connectivity. Oecologia Australis 15: 86-110.
http://dx.doi.org/10.4257/oeco.2011.1501.08

Barnes D.K., De Grave S. 2000. Biogeography of Southern Ocean bryozoans. Vie Milieu. 50: 261-273.

Barnes D.K.A., Griffiths H.J. 2008. Biodiversity and biogeography of southern temperate and polar bryozoans. Glob. Ecol. Biogeogr. 17: 84-99.
http://dx.doi.org/10.1111/j.1466-8238.2007.00342.x

Bastida R., Roux A., Martínez D. 1992. Benthic communities of the Argentine continental shelf. Oceanol. Acta 15: 687-698.

Bernasconi I. 1947. Distribución geográfica de los Equinoideos argentinos. An. Soc. Argent. Est. Geog. 8: 97-114.

Bernasconi I. 1959. Algunos asteroideos de Antártida. Contrib. Cient. Inst. Antart. Argent. 1: 2-22.

Bernasconi I. 1964a. Asteroideos argentinos. Claves para los órdenes, familias, subfamilias y géneros. Physis 24: 241-277.

Bernasconi I. 1964b. Asteroideos argentinos V. Familia Ganeriidae. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Zo. 9: 59-89.

Bernasconi I. 1964c. Distribución geográfica de los Equinoideos y Asteroideos de la extremidad austral de Sudamérica. Bol. Inst. Biol. Mar. 7: 43-50.

Bernasconi I. 1979. Asteriidae, Cosconasteriinae de la Argentina y Antártida. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 241-249.

Bernasconi I., D’Agostino M. 1974. Ampliación de la Zona de distribución de Amphiura crassipes Ljungman, 1867 (Ophiuroidea, Amphiuridae). Physis 33: 135-138.

Bernasconi I., D’Agostino M. 1977. Ofiuroideos del mar epicontinental argentino. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 65-123.

Bernasconi I., D` Agostino M. 1978. Equinodermos Antárcticos III. Ofiuroideos de Sandwich del Sur y Georgias del Sur. Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Inst. Nac. Invest. Cienc. Nat. (Argent) Hid. 5: 203-222.

Boltovskoy E. 1964. Provincias zoogeográficas de América del Sur y su sector Antárctico según los foraminíferos bentónicos. Bol. Inst. Biol. Mar. 7: 93-99.

Boltovskoy E. 1981. Masas de agua en el Atlántico Sudoccidental. Atlas del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Publ. Espec. INIDEP, Mar del Plata, 10 pp.

Boschi E. 1976. Nuevos aportes al conocimiento de la distribución geográfica de los crustáceos decápodos del Mar Argentino. Physis 35: 59-68.

Bremec C., Souto V., Genzano G. 2010a. Polychaete assemblages in SW Atlantic: Results of “Shinkai Maru” IV, V, X and XI (1978-1979) cruises in Patagonia and Buenos Aires. An. Inst. Patagon. (Chile) 38: 47-57.
http://dx.doi.org/10.4067/S0718-686X2010000200005

Bremec C., Marecos A., Escolar M. et al. 2010b. Riqueza específica en los bancos comerciales de vieira patagónica (Zygochlamys patagonica) a lo largo del frente de talud. Período 2009. Inf. Invest. INIDEP, 22, 18 pp.

Briggs J.C. 1974. Marine Zoogeography. McGraw-Hill Co., New York, 475 pp.

Briggs J.C. 2006. Proximate sources of marine biodiversity. J. Biogeogr. 33: 1-10.
http://dx.doi.org/10.1111/j.1365-2699.2005.01374.x

Brogger M., Gil D., Rubilar T. et al. 2013. Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In Alvarado J., Solís-Marín F.A. (eds), Echinoderm Research and Diversity in Latin America. Springer-Verlag, Berlin Heidelberg, pp. 359-402.
http://dx.doi.org/10.1007/978-3-642-20051-9_11

Brown J.H., Lomolino M.V. 1998. Biogeography, 2nd edn. Sinauer, Sunderland.

Chiantore M., Guidetti M., Cavallero M. et al. 2006. Sea urchins, sea stars and brittle stars from Terra Nova bay (Ross Sea, Antarctica). Polar Biol. 29: 467-475.
http://dx.doi.org/10.1007/s00300-005-0077-2

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143.
http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x

Clarke K.R., Warwick R.M. 2001. Change in Marine Communities: An approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth, 177 pp.

Crame J.A. 2000. Evolution of taxonomic Diversity gradients in the marine realm: evidence from the composition of recent bivalve faunas. Paleobiology 26: 188-214.
http://dx.doi.org/10.1666/0094-8373(2000)026<0188:EOTDGI>2.0.CO;2

Dahm C. 1999. Ophiuroids (Echinodermata) of southern Chile and the Antarctic: Taxonomy, biomass, diet and growth of dominant species. Sci. Mar. 63: 427-432.

De Domenico F., Chiantore M., Buongiovanni, S. et al. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land Coast, Ross Sea, Antarctica. Antarc. Sci. 18: 655-662.
http://dx.doi.org/10.1017/S095410200600068X

Díaz A., Palma A., Feral J. et al. 2006. Phylogeography of Sterechinus sea urchins in the Southern Ocean: a Antarctic and Subantarctic two-ring model. II Simposio Latinoamericano sobre Investigaciones Antárticas, 16-18 Agosto 2006, Concepción, Chile.

Ekman S. 1953. Zoogeography of the Sea. London, Sidwick & Jackson, 417 pp.

Escolar M. 2010. Variaciones espacio-temporales en la comunidad de invertebrados bentónicos asociada al frente de talud. Equinodermos como caso de estudio. PhD Thesis. Univ. Buenos Aires, Argentina, 189 pp.

Escolar M., Hernández D.R., Bremec C. 2013. Latitudinal and bathymetric distribution patterns of ophiuroids (Echinodermata: Ophiuroidea) on scallop fishing grounds at the shelf-break frontal system, South-Western Atlantic. Mar. Biodiver. Rec. 6: 1-8.
http://dx.doi.org/10.1017/S1755267213000936

Fisher W.K. 1940. Asteroidea. Discovery Reports XX: 69-306.

Gage J., Tyler P.A. 1982. Depth-related gradients in size structure and the bathymetric zonation of deep-sea brittle stars. Mar. Biol. 71: 299-308.
http://dx.doi.org/10.1007/BF00397046

Genzano G.N., Giberto D., Schejter L. et al. 2009. Hydroid assemblages from the South-western Atlantic Ocean (34-42°S). Mar. Ecol. 30: 33-46.
http://dx.doi.org/10.1111/j.1439-0485.2008.00247.x

Griffiths H., Barnes D., Linse K. 2009. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 36: 162-177.
http://dx.doi.org/10.1111/j.1365-2699.2008.01979.x

Gray J. 2001. Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol. 24: 633-641.
http://dx.doi.org/10.1007/s003000100244

Hedgpeth J.W. 1969. Introduction to Antarctic zoogeography: Distribution of selected groups of marine invertebrates in waters south of 35ºS latitude. In: Bushnell V.C., Hedgpeth J.W. (eds), Antarctic Map Folio Series, American Geographical Society, New York, pp. 11: 1-9.

Hernández C.E., Moreno R.A., Rozbaczylo N. 2005. Biogeographical patterns and Rapoport’s rule in southeastern Pacific benthic polychaetes of the Chilean coast. Ecography 28: 363-373.
http://dx.doi.org/10.1111/j.0906-7590.2005.04013.x

Hillebrand H. 2004. On the Generality of the Latitudinal Diversity Gradient. Am. Nat. 163: 192-211.
http://dx.doi.org/10.1086/381004

Iken K., Konar B., Benedetti-Cecchi L. et al. 2010. Large-Scale spatial distribution patterns of echinoderms in nearshore rocky habitats. PLoS One 5: e13845.
http://dx.doi.org/10.1371/journal.pone.0013845

Lancellotti D., Vásquez J. 2000. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: Contribución para la conservación marina. Rev. Chil. Hist. Nat. 73: 99-129.
http://dx.doi.org/10.4067/S0716-078X2000000100011

Larraín A. 1995. Biodiversidad de equinodermos chilenos: Estado actual del conocimiento y sinopsis biosistemática. Gayana Zool. 59: 73-96.

Larraín A., Mutschke E., Riveros A. et al. 1999. Preliminary report on Echinoidea and Asteroidea (Echinodermata) of the Joint Chilean-German-Italian Magellan “Victor Hensen” Campaign, 17 October - 25 November 1994. Sci. Mar. 63: 433-438.
http://dx.doi.org/10.3989/scimar.1999.63s1433

López Gappa J. 2000. Species richness of marine Bryozoa in the continental shelf and slope off Argentina (South-West Atlantic). Diversity Distrib. 6: 15-27.
http://dx.doi.org/10.1046/j.1472-4642.2000.00067.x

López Gappa J., Lichtschein V. 1988. Geographic distribution of bryozoans in the Argentine Sea (South-Western Atlantic). Oceanol. Acta 11: 89-99.

López Gappa J., Landoni N. 2005. Biodiversity of Porifera in the Southwest Atlantic between 35° and 56°S. Rev. Mus. Argent. Cient. Nat. 7: 191-219.

López Gappa J., Alonso G.M., Landoni N. 2006. Biodiversity of benthic Amphipoda (Crutacea: Peracarida) in the Southwest Atlantic between 35° and 56°S. Zootaxa 1342: 1-66.

Manjón-Cabeza M., Ramos A. 2003. Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula Region. Polar Biol. 26: 691-699.
http://dx.doi.org/10.1007/s00300-003-0539-3

Martínez S. 2008. Shallow water Asteroidea and Ophiuroidea of Uruguay: composition and biogeography. Rev. Biol. Trop. 56: 205-214.

McCulloch R., Davies S. 2001. Late-glacial and holocene palaeoenvironmental change in the central Strait of Magellan, southern Patagonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173: 143-173.
http://dx.doi.org/10.1016/S0031-0182(01)00316-9

Menni R., Jaureguizar A., Stehmann M. et al. 2010. Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity Conserv. 19: 775-796.
http://dx.doi.org/10.1007/s10531-009-9734-z

Montiel A., Gerdes D., Arntz W.E. 2005. Distributional patterns of shallow-waters polychaetes in the Magellan Region: a zoogeographical and ecological synopsis. Sci. Mar. 69: 123-133.

Mortensen T. 1917. The Crinoidea of the Swedish Antarctic Expedition. Wiss Ergebn. Schwed. Südpolar Exp. 8: 10-15.

Mortensen T. 1920. The Crinoidea. Wiss Ergebn Schwed Südpolar Exp 6: 1-24.

Mortensen T. 1936. Echinoidea and Ophiuroidea. Discovery Reports XII: 109-348.

Moyano H. 2005. Scotia Arc bryozoans from the LAMPOS expedition: a narrow bridge between two different faunas. Sci. Mar. 69: 103-112.

Mutschke E., Ríos C. 2006. Distribución espacial y abundancia relativa de los equinodermos en el Estrecho de Magallanes, Chile. Cienc. Tecnol. Mar. (Valpso) 29: 91-102.

Okolodkov Y. 2010. Biogeografía Marina. Universidad Autónoma de Campeche. 217 p.

O’Loughlin P., Paulay G., Davey N. et al. 2011. The Antarctic Region as marine biodiversity hot spot for echinoderms: Diversity and diversification of sea cucumbers. Deep Sea Res. Part II, 58: 254-275.
http://dx.doi.org/10.1016/j.dsr2.2010.10.011

Pawson D. 1969. Holothuroidea fron Chile. Rep Nº 46 Lund Univ. Chile Exped. 1948-1949. Sarsia 38: 121-145.

Pérez-Ruzafa A., Alvarado J.J., Solís-Marín F.A. et al. 2013. Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities. In Alvarado J., Solís-Marín F.A. (eds), Echinoderm Research and Diversity in Latin America. Springer-Verlag, Berlin Heidelberg, pp. 511-542.
http://dx.doi.org/10.1007/978-3-642-20051-9_16

Rodríguez E., López-González P., Gili J. 2007. Biogeography of Antarctic sea anemones (Anthozoa, Actiniaria): What do they tell us about the origin of the Antarctic benthic fauna? Deep-Sea Res. Part II. 54: 1876-1904.
http://dx.doi.org/10.1016/j.dsr2.2007.07.013

Roy K., Jablonski D., Valentine J. et al. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. PNAS. 95: 3699-3702.
http://dx.doi.org/10.1073/pnas.95.7.3699

Sokolova M.N. 1972. Trophic structure of deep-sea macrobenthos. Mar. Biol. 16: 1-12.
http://dx.doi.org/10.1007/BF00347841

Stuardo B. 1964. Distribución de los moluscos marinos litorales en Latinoamérica. Bol. Inst. Biol. Mar. 7: 79-91.

Tommasi L. 1965. Faunistic provinces of the western South Atlantic littoral Region (summary). Anais Acad. Bras. Cienc. 37: 261-262.

Tommasi L. 1970. Lista dos asteroides recentes N/Oc. “Almirante Saldanha” do Brasil. Contr. Avulsas Inst. Oceanogr. Univ. São Paulo Ser. Oceanogr. Biol. 18: 1-61.
http://dx.doi.org/10.1590/S0373-55241969000100001

Tommasi L.R., de Castro S.M., de Sousa E. 1988a. Echinodermata coletados durante as campanhas oceanograficas do N/Oc. “Almirante Saldanha” no Atlantico sul occidental. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 21, 11 pp.

Tommasi L.R., Cernea M., Condeixa M. 1988b. Equinodermes coletados pelo N/Oc. “Almirante Saldanha”, entre 26°59’S e 38° 39’S. Relat. Interno Inst. Oceanogr. Univ. Sao Paulo 22, 11 pp.

Valdovinos C., Navarrete S., Marquet P. 2003. Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26: 139-144.
http://dx.doi.org/10.1034/j.1600-0587.2003.03349.x

Vannucci M. 1964. Zoogeografia marinha do Brasil. Bol. Inst. Biol. Mar. 7: 113-121.

Ventura C., Fernandes F. 1995. Bathymetric distribution and population size structure of paxillosid seastars (Echinodermata) in the Cabo Frío upwelling ecosystem of Brazil. Bull. Mar. Sci. 56: 268-282.

Von Ihering H. 1927. Die geschichte des Atlantischen oceans. Gustav Fisher, Jena, 237 pp.

Worm B., Barbier E., Beaumont N. et al. 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314: 787-790.
http://dx.doi.org/10.1126/science.1132294

Zaixso H.E., Lizarralde Z. 2000. Distribución de equinodermos en el golfo San José y sur del golfo San Matías (Chubut, Argentina). Rev. Biol. Mar. Oceanogr. 35: 127-145.
http://dx.doi.org/10.4067/S0718-19572000000100002

Appendix 1. – List of the species of Echinodermata recorded for the southwest Atlantic between 34 and 56°S and between 50°W and the coast of Argentina. Species with an asterisk (*) were not included in subsequent analyses.

PHYLUM ECHINODERMATA Bruguière, 1791
CLASE ASTEROIDEA de Blainville, 183
ORDEN FORCIPULATIDA Perrier, 1884
FAMILIA ASTERIIDAE Gray, 1840
Allostichaster capensis (Perrier, 1875)
Anasterias antarctica (Lütken, 1857)
Anasterias pedicellaris Koehler, 1923
Anasterias studeri Perrier, 1891
Anasterias varia (Philippi, 1870) *
Cosmasterias lurida (Philippi, 1858)
Diplasterias brandti (Bell, 1881)
Lethasterias australis Fisher, 1923
Neomilaster steineni (Studer, 1885)
Perissasterias polyacantha H.L. Clark, 1923
Psalidaster mordax Fisher, 1940
Sclerasterias contorta (Perrier, 1881)
FAMILIA HELIASTERIDAE Viguier, 1878
Labidiaster radiosus Lütken, 1871
ORDEN NOTOMYOTIDA Ludwig, 1910
FAMILIA BENTHOPECTINIDAE Verrill, 1899
Cheiraster (Luidiaster) planeta (Sladen, 1889)
FAMILIA STICHASTERIDAE
Smilasterias scalprifera (Sladen, 1889) *
ORDEN PAXILLOSIDA Perrier, 1884
FAMILIA ASTROPECTINIDAE Gray, 1840
Astropecten brasiliensis Müller & Troschel, 1842
Astropecten b. brasiliensis Müller & Troschel, 1842
Astropecten cingulatus Sladen, 1833
Bathydiaster loripes Sladen, 1889
Psilaster herwigi (Bernasconi, 1972)
Psilaster charcoti (Koehler, 1906) *
FAMILIA CTENODISCIDAE Sladen, 1889
Ctenodicus australis Lütken, 1871
FAMILIA LUIDIIDAE Sladen, 1889
Luidia alternata alternata (Say, 1825)
Luidia ludwigi scotti Bell, 1917
FAMILIA PSEUDARCHASTERIDAE
Pseudarchaster discus Sladen, 1889 *
ORDEN SPINULOSIDA Perrier, 1884
FAMILIA ECHINASTERIDAE Verrill, 1870
Henricia obesa (Sladen, 1889)
Henricia studeri Perrier, 1891
Henricia diffidens (Koehler, 1923) *
ORDEN VALVATIDA Perrier, 1884
FAMILIA ASTERINIDAE Gray, 1840
Asterina fimbriata Perrier, 1875
Asterina stellifera (Möbius, 1859)
FAMILIA GANERIIDAE Sladen, 1889
Cycethra verrucosa (Philippi, 1857
Cycethra verrucosa verrucosa (Philippi, 1857)
Ganeria falklandica Gray, 1847
Ganeria hahni Perrier, 1891
FAMILIA GONIASTERIDAE Forbes, 1841
Ceramaster patagonicus (Sladen, 1889)
Ceramaster grenadensis patagonicus (Sladen, 1889)*
Cladaster analogus Fisher, 1940
Hippasteria falklandica Fisher, 1940
Hippasteria phrygiana argentinensis Bernasconi, 1961
FAMILIA ODONTASTERIDAE Verrill, 1899
Acodontaster e. granuliferus (Koehler, 1912)
Diplodontias singularis granulosus Perrier, 1891
Odontaster penicillatus (Philippi, 1870)
FAMILIA PORANIIDAE Perrier, 1875
Porania (Porania) antarctica magellanica Studer, 1876
Porianiopsis mira de Loriol, 1904)
ORDEN VELATIDA Perrier, 1884
FAMILIA PTERASTERIDAE Perrier, 1875
Diplopteraster clarki Bernasconi, 1937
Diplopteraster verrucosus (Sladen, 1882)
Pteraster affinis lebruni Perrier, 1891
Pteraster gibber (Sladen, 1882) *
Pteraster stellifer Sladen, 1882
FAMILIA SOLASTERIDAE Viguier, 1878
Lophaster stellans Sladen, 1889
Solaster regularis Sladen, 1889
FAMILIA MYXASTERIDAE
Pythonaster murrayi Sladen, 1889 *
CLASE OPHIUROIDEA Gray, 1840
ORDEN OPHIURIDA Müller & Troschel, 1840
FAMILIA AMPHIURIDAE Ljungman, 1867
Amphiodia planispina (v. Martens, 1867)
Amphioplus albidus (Ljungman, 1867)
Amphiura crassipes Ljungman, 1867
Amphiura eugeniae Ljungman, 1867
Amphiura joubini Koehler, 1912
Amphiura magellanica Ljungman, 1867
Amphiura princeps Koehler, 1907
Amphiura lymani Studer, 1885 *
Amphipholis squamata (Delle Chiaje, 1828) *
FAMILIA OPHIACANTHIDAE Ljungman, 1867
Ophiacantha vivipara Ljungman, 1870
Ophiacantha densispina Mortensen, 1836 *
Ophiochondrus stelliger Lyman, 1879
FAMILIA OPHIACTIDAE Matsumoto, 1915
Ophiactis asperula (Philippi, 1858)
FAMILIA OPHIOLEPIDIDAE Ljungman, 1867
Ophiomusium archaster Lyman, 1878 *
Ophioplocus januarii (Lütken, 1856)
Ophiozonella falklandica Mortensen, 1936 *
FAMILIA OPHIOMYXIDAE Ljungman, 1867
Ophiolycus nutrix (Mortensen, 1936) *
Ophiomyxa vivipara Studer, 1876
FAMILIA OPHIURIDAE Müller & Troschel, 1840
Ophioplinthus inornata (Lyman, 1878)
Ophiocten amitinum Lyman, 1878
Ophiolebella biscutifera (G. A. Smith, 1923) *
Ophiura (Ophiuroglypha) carinifera (Koehler, 1901)
Ophiura (Ophiuroglypha) lymani (Ljungman, 1871)
ORDEN EURYALIDA Lamarck, 1816
FAMILIA GORGONOCEPHALIDAE Ljungman, 1867
Astrotoma agassizii Lyman, 1875
Gorgonocephalus chilensis (Philippi, 1858)
CLASE ECHINOIDEA Leske, 1778
ORDEN ARBACIOIDA Gregory, 1900
FAMILIA ARBACIIDAE Gray, 1855
Arbacia dufresnii (Blainville, 1825)
ORDEN CIDAROIDA Claus, 1880
FAMILIA CIDARIDAE Gray, 1825
Austrocidaris canaliculata (A. Agassiz, 1863)
Austrocidaris spinulosa Mortensen, 1910
ORDEN CAMARODONTA Jackson, 1912
FAMILIA ECHINIDAE Gray, 1825
Sterechinus agassizii Mortensen, 1910
FAMILIA TEMNOPLEURIDAE A. Agassiz, 1872
Pseudechinus magellanicus (Philippi, 1857)
ORDEN CLYPEASTEROIDA L. Agassiz, 1835
FAMILIA MELLITIDAE Stefanini, 1912
Encope emarginata (Leske, 1778)
Leodia sexiesperforata (Leske, 1778) *
ORDEN SPATANGOIDA L. Agassiz, 1840a
FAMILIA PRENASTERIDAE Lambert, 1905
Parapneustes reductus Koehler, 1912 *
Tripylus excavatus Philippi, 1845
FAMILIA SCHIZASTERIDAE Lambert, 1905
Abatus agassizii (Pfeffer, 1889)
Abatus cavernosus (Philippi, 1845)
Abatus philippii Lovén, 1871
Aceste bellidifera Thomson, 1877 *
Tripylaster philippii (Gray, 1851)
CLASE HOLOTUROIDEA
ORDEN APODIDA Brandt, 1835
FAMILIA CHIRIDOTIDAE Østergren, 1898
Chiridota marenzelleri Perrier R, 1904
Chiridota pisanii Ludwig, 1887
Taeniogyrus contortus (Ludwig, 1875)
Trochodota purpurea Pawson, 1969 *
ORDEN DENDROCHIROTIDA
FAMILIA CUCUMARIIDAE Ludwig, 1894
Cladodactyla crocea (Lesson, 1830) Panning, 1949
Hemioedema spectabilis (Ludwig, 1883)
Pseudocnus cornutus (Cherbonnier, 1941)
Pseudocnus dubiosus leoninus (Semper, 1867)
Pseudocnus perrieri (Ekman, 1927) Panning, 1963
Trachythyone parva (Ludwig, 1875)
Trachythyone peruana (Semper, 1868)
FAMILIA PARACUCUMIDAE Pawson & Fell, 1965
Ekmocucumis steineri (Ludwig, 1886)
FAMILIA PHYLLOPHORIDAE Oestergren, 1907
Pentamera chiloensis (Ludwig, 1887)
FAMILIA PSOLIDAE Perrier, 1902
Psolidium dorsipes Ludwig, 1887
Psolus antarcticus Philippi, 1857 *
Psolus murrayi Théel, 1886 *
Psolus patagonicus Ekman, 1925
CLASE CRINOIDEA Miller, 1821
ORDEN COMATULIDA
FAMILIA ANTEDONIDAE Norman, 1865
Phrixometra nutrix (Mortensen, 1918)
Isometra vivipara (Mortensen, 1917)

Appendix 2. – List of publications used in the preparation of the historical database.

1 Agassizi A. 1881 Report on the Echinoidea. Zoology 9 IX 321 pages with 66 plates. In Report of the Challenger expedition Volumen 3. London.
2 Bastida R., Roux A., Martinez D. 1992 Benthic communities of the Argentine continental shelf. Oceanol. Acta 15.
3 Bernasconi I. 1937 Asteroideos argentinos I: Familia Pterasteridae. Anales del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” 39: 167-187.
4 Bernasconi I. 1941 Los equinodermos de la expedición del Buque Oceanográfico “Comodoro Rivadavia” ARA. Physis 19: 37-49, lams 1-8, 30 figs.
5 Bernasconi I. 1943 Los asteroideos sudamericanos de la familia Luidiidae. Anal. Mus. Argentino Cien. Nat. “Bernardino Rivadavia” 61: 1-20.
6 Bernasconi I. 1953 Monografía de los equinoideos argentinos. Anal. Mus. Hist. Nat. Montevideo. Segunda ser. 6(2): 1-58.
7 Bernasconi I. 1962 Asteroideos argentinos III: Familia Odontasteridae. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Cienc. Zool. 8(3): 27-51.
8 Bernasconi I. 1963 Asteroideos argentinos IV: Familia Goniasteridae. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Cienc. Zool. 9: 1-26.
9 Bernasconi I. 1964 Asteroideos argentinos V: Familia Ganeriidae. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Cienc. Zool. 9(4): 59-89.
10 Bernasconi I. 1966 Los equinoideos y asteroideos colectados por el buque oceanográfico R/V “Vema”, frente a las costas argentinas, uruguayas y sur de Chile. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Cienc. Zool. 9(7): 147-175, 2pls.
11 Bernasconi I. 1973 Los equinodermos colectados por el “Walter Herwing” en el Atlántico Sudoeste. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Hidrobiol. 3(3): 287-334.
12 Bernasconi I., D’Agostino, 1977 Ofiuroideos del mar epicontinental argentino. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” 5(5): 65-114.
13 Bernasconi I. 1979 Asteriidae, Cosconasteriinae de la Argentina y Antártida. Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” Hidrobiol. 5(11): 241-249.
14 Bernasconi I. 1980 Asteroideos argentinos VII. Familia Echinasteridae
Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Hidrobiología, 4 (12), 247-258.
15 Bremec C., Roux A. 1997 Resultados del análisis de una campaña de investigación pesquera, sobre comunidades bentónicas asociadas a bancos de mejillón (Mytilus edulis platensis D’Orb.) en costas de Buenos Aires, Argentina. Rev. Invest. Desarr. Pesq. 11: 153-166.
16 Callebaut J., Borzone C. 1979 Observaciones ecológicas del infralitoral de Puerto Deseado (Provincia de Santa Cruz, Argentina) I. Península Foca Ecosur, 6(11): 45-54.
17 Carriquiriborde L., Borzone C., Lizarralde Z., Pombo A., Manriquez R., Ichazo, M. 1982 Aspectos Biocenológicos del Golfo Nuevo (Chubut-Argentina). VIII Simposio sobre Oceanografía Biológica. Montevideo Uruguay.
18 Fisher, W.K., 1940 Asteroidea. Discovery Reports 20: 69-306. pls. 1-23.
19 Giberto D., Bremec C. 2005 Benthic diversity of the Río de la Plata Estuary and adjacent Marine Waters. Freplata, Montevideo Uruguay
20 Hernandez D., Tablado A. 1985 Asteroidea de Puerto Deseado (Santa Cruz, Argentina). Contribución Científica Nº193 del Centro de Investigación de Biología Marina (CIBIMA), 16 pp.
21 Hernandez D. 1981 Holothuroidea de Puerto Deseado (Santa Cruz, Argentina). Rev. Museo Argentino Cienc. Nat. “Bernardino Rivadavia” 4: 151-168.
22 Lyman T. 1882 Report on the Ophiuroidea. Zoology 14 XIV, 387 pages with 48 plates. In Report of the Challenger Expedition Volumen 5. London.
23 Milstein A., Juanico M., Olazarri J. 1976 Algunas asociaciones bentónicas frente a las costas de Rocha, Uruguay. Resultados de la campaña del R/V “Hero”, viaje 72-3A. Com. Soc. Malac. Urug. Vol IV, 30, 143-164
24 Mortensen, T. 1936 Echinoidea and Ophiuroidea. Discovery Reports 12: 199-348, Plates I-IX.
25 Olivier S., Bastida R., Torti M. 1968 Resultados de las Campañas Oceanográfica I-V. Contribución al trazado de una carta bionómica del área de Mar del Plata. Bol. Inst. Biol. Mar. 16: 1-85.
26 Roux A., Bremec C. 1996 Comunidades bentónicas relevadas en las transacciones realizadas frente al Río de La Plata (35°15’S), Mar del Plata (38°10’S) y Península de Valdes (42°35’S), Argentina. Contribución INIDEP Nº 938, 13 pp.
27 Roux A., Fernandez M. 1997 Caracterización de los fondos de pesca de langostino patagónico Pleoticus muelleri en el golfo San Jorge y litoral de la provincia de Chubut-Argentina. INIDEP Inf. Técnico 13
28 Roux A., Fernández M., Bremec C. 1995 Estudio preliminar de las comunidades bentónicas de los fondos de pesca de langostino patagónico del golfo San Jorge (Argentina). Cienc. Mar. 21(3), 295-310.
29 Roux A., Bastida R., Bremec C. 1993 Comunidades bentónicas de la plataforma continental argentina. Campañas transección BIP “Oca Balda” 1987/88/89. Boletin del Instituto Oceanográfico, San Pablo, 41(1/2), 81-94.
30 Roux A., Bastida R., Lichtschein V.,
Barreto A. 1988
Investigaciones sobre las comunidades bentónicas de plataforma a través de una transecta frente a Mar del Plata. Spheniscus, 6, 19-52.
31 Sladen W.P. 1889 Report on the Asteroidea. Zoology 51 LI, 893 pages with 117 plates. In Report of the Challenger expedition Volumen 30. London.
32 Tablado A. 1982 Asteroideos argentinos. Familia Poraniidae. Com. Mus. Arg. Cs. Nat., Hidrob., Argentina, 2(2), 87-106.
33 Tablado A., Maytia S. 1988 Presencia de Perissasterias polyacantha H.L. Clark 1923 (Echinodermata, Asteroidea) en el Atlántico sudoccidental. Com. Zool. Mus. Hist. Nat. Montivideo, Uruguay, 12 (169), 1-11.
34 Tommasi l., Cernea M. Condeixa M. 1988 Equinodermos colectados pelo N/Oc. “Almirante Saldanha”, entre 26°59’S e 38°39’S. Relat. Int. Inst. Oceanogr. Univ. S. Paulo, 22, 11 pp.
35 Theel, H. 1882 Report on the Holothuroidea 1. Challenger Scientific Results. Zoology, 4: 1-136.
36 Theel, H. 1886 Report on the Holothurioidea 2. Challenger Scientific Results. Zoology, 14: 1-290.


Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es