Scientia Marina, Vol 77, No 2 (2013)

Effects of density and size distribution on the erosion of the adult cockle Cerastoderma edule


https://doi.org/10.3989/scimar.03754.27A

Jose Anta
Environmental and Water Engineering Group, University of A Coruña, Spain

Enrique Peña
Environmental and Water Engineering Group, University of A Coruña, Spain

Jerónimo Puertas
Environmental and Water Engineering Group, University of A Coruña, Spain

Abstract


A series of experimental flume experiments were carried out to evaluate the passive transport of the adult cockle Cerastoderma edule with shell sizes from 15 to 35 mm. The purpose of the study was to measure the erosion of this bivalve under controlled laboratory conditions, reproducing the current velocities and the cockle size distribution found at the Lombos do Ulla river mouth in Spain during high river discharges. Increasing velocities (0.29, 0.31, 0.35, 0.40, 0.44 and 0.47 m s–1) were applied to the bivalves, analysing the influence of population density (500 and 1000 ind. m–2), activity (live vs dead individuals), and mollusc size and distribution. To assess the effect of bivalve size distribution on the cockle transport, uniform and non-uniform cockle size distributions were tested. The particle image velocimetry technique and the double-averaged methodology were used to determine velocity fields during the experiments. In the experiments cockle erosion rates were found to be directly related to the flow velocity and inversely related to the population density. The erosion behaviour of uniform and graded cockle size distributions showed differences similar to those found in the bedload transport of uniform and non-uniform sediment mixtures. Our results provide a mechanism to explain the observed physical transport of bivalve populations after large storm events.

Keywords


Cerastoderma edule; erosion; flume experiments; particle image velocimetry; double-averaged methodology

Full Text:


PDF

References


Anta J., Pe-a E., Puertas J., Cea L. 2013. A bedload transport equation for the Cerastoderma edule cockle. J. Mar. Sys. 111-112: 189-195. http://dx.doi.org/10.1016/j.jmarsys.2012.10.014

ASTM Standard D-2974, 2000. 2007. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. American Society for Testing and Materials International, West Conshohocken, PA.

Buffington J.M., Montgomery D.R. 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-beded rivers. Wat. Res. Res. 33: 1993-2029. http://dx.doi.org/10.1029/96WR03190

Cea L., Puertas J., Vázquez-Cendón M.E. 2007. Depth averaged modeling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng. 14: 303-341. http://dx.doi.org/10.1007/s11831-007-9009-3

Cea L., Anta J., Puertas J., Pña E. 2010. Implementation of a cockle habitat model in a two-dimensional shallow water model: application to a shallow estuary. In: Proceedings of Ist European IAHR. Edimburgh.

Ciutat A., Widdows J., Pope D.J. 2007. Effect of Cerastoderma edule density in near-bed hydrodynamics and stability of cohesive muddy sediments. J. Exp. Mar. Biol. Ecol. 346: 114-116. http://dx.doi.org/10.1016/j.jembe.2007.03.005

Commito J.A., Thrush S.F., Pridmore R.D., Hewitt J.E., Cummings V.J. 1995. Dispersal dynamics in a wind-driven benthic system. Limnol. Oceanogr. 40: 1513-1518. http://dx.doi.org/10.4319/lo.1995.40.8.1513

Commito J.A., Celano E.A., Celico H.J., Como S., Johnson C.P. 2005. Mussels matter: Postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J. Exp. Mar. Biol. Ecol. 316: 133-147. http://dx.doi.org/10.1016/j.jembe.2004.10.010

de Montaudouin X. 1997. Potential of bivalves' secondary settlement differs with species: a comparasion between cockle (Cerastoderma edule) and clam (Ruditapes philippnarum) juvenile resuspension. Mar. Biol. 128: 639-648. http://dx.doi.org/10.1007/s002270050130

de Montaudouin X., Bachelet B. 1996. Experimental evidence of complex interactions between biotic and abiotic factors in dynamics of an intertidal population of the bivalve Cerastoderma edule. Ocean. Acta 19: 449-463.

de Montaudouin X., Bachelet B., Sauriau P.-G. 2003. Secondary settlement of cockles Cerastoderma edule as a function of current velocity and substratum: a flume study with benthic juveniles. Hydrobiology 203: 103-116. http://dx.doi.org/10.1023/B:HYDR.0000008493.83270.2d

García M.H. 2006. Lecture Notes on Sediment Transport. Ven Te Chow Hydrosystems Lab. University of Illionis at Urbana-Champaign, 192 pp.

Hunt H.L. 2004. Transport of juvenile clams: effects of species and sediment grain size. J. Exp. Mar. Biol. Ecol. 312: 271-284. http://dx.doi.org/10.1016/j.jembe.2004.07.010

Hunt H.L., Maltais M.-J., Fugate D.C., Chant R.J. 2007. Spatial and temporal variability in juvenile bivalve dispersal: effects of sediment transport and flow regime. Mar. Ecol. Prog. Ser. 352: 145-159. http://dx.doi.org/10.3354/meps07131

Jennings L.B., Hunt H.L. 2009. Distances of dispersal of juvenile bivalves (Mya arenaria (Linnaeus), Mercenaria mercenaria (Linnaeus), Gemma gemma (Totten)). J. Exp. Mar. Biol. Ecol. 376: 76-84. http://dx.doi.org/10.1016/j.jembe.2009.06.009

Jiménez J. 2004. Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36: 173-196. http://dx.doi.org/10.1146/annurev.fluid.36.050802.122103

Jonsson P.R., van Duren L.A., Amielh M., Asmus R., Aspden R.J., Daunys D., Friedrichs M., Friend P.L., Olivier F., Pope N., Precht E., Sauriau P.G., Schaaff E. 2006. Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes. Aquat. Ecol. 40: 409-438. http://dx.doi.org/10.1007/s10452-006-9049-z

Julien P.Y. 2002. River Mechanics. Cambridge University Press, Cambridge, 434 pp. http://dx.doi.org/10.1017/CBO9781139164016

Lundquist C.J., Pilditch C.A., Cummings V.J. 2004. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. J. Exp. Mar. Biol. Ecol. 306: 51-74. http://dx.doi.org/10.1016/j.jembe.2003.12.020

Molares J., Parada J.M., Sánchez-Mata A., Martínez G., Darriba C., Rodal M., Carreira P., Varela T., Crego A., Mariño J. 2007. Gestión del banco marisquero de "Lombos do Ulla" desde 2002 a 2007. In: XI Congreso Nacional de Acuicultura, Vigo. PMid:17952124

Nezu I., Nakagawa H. 1993. Turbulence in Open-Channel Flows. A.A. Balkema, Rotterdam, 281 pp.

Nikora V., McEwan I., McLean S., Coleman S., Pokrajac D., Walters R. 2007. Double-averaging concept for rough-bed openchannel and overland flows: Theoretical background. J. Hyd. Eng. 133: 873-883. http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:8(873)

Nowell A.R.M., Jumars P.A. 1984. Flow environments of aquatic benthos. Annu. Rev. Ecol. Syst. 15:303-328. http://dx.doi.org/10.1146/annurev.es.15.110184.001511

Parada J.M., Molares J., Sánchez-Mata A., Martínez G., Darriba C., Mari-o J. 2006. Plan de actuación para la recuperación del banco "Lombos do Ulla": Campa-as marisqueras desde 2002 a 2005 (in Spanish). Revista Galega dos Recursos Mari-os 1: 1-37.

Parada J.M., Molares J., Otero X. 2007. Episodios de mortalidad en el banco marisquero "Lombos do Ulla" (Ría de Arousa - NO de Espa-a) deducidos a partir de datos metereológicos de los últimos 45 a-os (in Spanish). In: XI Congreso Nacional de Acuicultura, Vigo.

Parker G. 1990. Surface-based bedload transport relation for gravel rivers. J. Hyd. Res. 28: 417-436. http://dx.doi.org/10.1080/00221689009499058

Pe-a E., Anta J., Puertas J., Teijeiro T. 2008. Estimation of drag coefficient and settling velocity of the cockle Cerastoderma edule using Particle Image Velocimetry. J. Coast. Res. 24: 150-158.

Piedra-Cueva I., Mory M., Temperville A. 1997. A race-track recirculating flume for cohesive sediment research. J. Hyd. Res. 35: 377-396. http://dx.doi.org/10.1080/00221689709498419

Raffel M., Willert C., Wereley S., Kompenhans J. 2007. Particle Image Velocimetry. A practical guide. Springer, Berlin, 448 pp.

Redjah I., Olivier F., Tremblay R., Myrand B., Pernet F., Neumeir U., Chevarie L. 2010. The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture 307: 20-28. http://dx.doi.org/10.1016/j.aquaculture.2010.06.022

Richardson C.A., Ibarrola I., Ingham R.J. 1993. Emergence pattern and spatial distribution of the common cockle Cerastoderma edule. Mar. Ecol. Prog. Ser. 99: 71-81. http://dx.doi.org/10.3354/meps099071

Roegner C., André C., Lindegarth M., Eckman J.E., Grant J. 1995. Transport of recently settled soft-chell clams (Mya arenaria L.) in laboratory flume flow. J. Exp. Mar. Biol. Ecol. 187: 13-26. http://dx.doi.org/10.1016/0022-0981(94)00166-B

Sidgursson J.B., Titman C.W., Davies P.A. 1976. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262: 386-387. http://dx.doi.org/10.1038/262386a0

St-Onge P., Miron G. 2007. Effects of current speed, shell length and type of sediment on the erosion and transport of juvenile softshell clams (Mya arenaria). J. Exp. Mar. Biol. Ecol. 349: 12-26. http://dx.doi.org/10.1016/j.jembe.2007.03.020

St-Onge P., Miron G., Moreau G. 2007. Burrowing behaviour of the softshell clam (Mya arenaria) following erosion and transport. J. Exp. Mar. Biol. Ecol. 340: 103-111. http://dx.doi.org/10.1016/j.jembe.2006.08.011

Underwood A.J. 1997. Experiments in Ecology. Their logical design and interpretaion using analysis of variance. Cambridge University Press, Cambridge, 504 pp.

Valanko S., Norkko A., Norkko J. 2010. Strategies of post-larval dispersal in non-tidal soft-sediment communities. J. Exp. Mar. Biol. Ecol. 384: 51-60. http://dx.doi.org/10.1016/j.jembe.2009.12.012

van Duren L.A., Herman P.M.J., Sandee A.J.J., Heip C.H.R. 2006. Effects of mussel filtering activity on boundary layer structure. J. Sea Res. 55: 3-14. http://dx.doi.org/10.1016/j.seares.2005.08.001

Westerweel J. 1994. Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids 16: 236-247.

Widdows J., Lucas J.S., Brinsley M.D., Salked P.N., Staff F.J. 2002. Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgoländer Mar. Res. 56: 3-12.




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es