Scientia Marina, Vol 77, No 2 (2013)

On the use of biomass size spectra linear adjustments to design ecosystem indicators

Paúl Gómez-Canchong
COPAS Sur-Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-oriental, Universidad de Concepción - Departamento de Oceanografía, Universidad de Concepción , Chile

José M. Blanco
Grupo de Investigación en Ecología Marina y Limnología (GEML), Departamento de Ecología, Universidad de Málaga , Spain

Renato A. Quiñones
COPAS Sur-Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-oriental, Universidad de Concepción - Departamento de Oceanografía, Universidad de Concepción , Chile


Biomass size spectra describe the structure of aquatic communities ataxonomically. The slope (b) of the normalized biomass size spectrum (NBSS) is often used as an indicator of the impact of perturbations, such as pollution or overfishing. The NBSS intercept (a), has generally been ignored on the basis of a correlation between the NBSS slope and intercept, although this correlation has not been shown to be universal. We assessed whether the NBSS parameters are correlated using: (i) theoretical analysis, (ii) virtual communities randomly generated based only on statistical considerations, and (iii) virtual food webs changing over time following a dynamic bioenergetic model. We also analyzed whether the parameters of the Pareto distribution are correlated or not, using approaches (i) and (ii). We found that when communities change over time there is no single relationship between the two NBSS parameters, due to a dependence on the variation in total community abundance (N). We conclude that to characterize any aquatic system at least two parameters are necessary from the NBSS triad N, a, b. In the case of the Pareto distribution, both NPareto and bPareto are necessary.


biomass size spectrum; Pareto distribution; bioenergetic model; linear biomass hypothesis; complex food webs; ecosystem management

Full Text:



Bartkiw S., Boldt J., Livingston P., Walters G., Hoff G. 2007. Indicators of size diversity in the eastern Bering Sea. Copenhagen Denmark Ices 2007/E: 21.

Beddington J.R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331-340.

Benoit E., Rochet M.J. 2004. A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J. Theor. Biol. 226: 9-21.

Berlow E.L., Dunne J.A., Martinez N.D., Stark P.B., Williams R.J., Brose U. 2009. Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. U.S.A. 106: 187-191. PMid:19114659 PMCid:PMC2629248

Bianchi G., Gislason H., Graham K., Hill L., Jin X., Koranteng K., Manickchand-Heileman S., Payá I., Sainsbury K., Sanchez F., Zwanenburg K. 2000. Impact of fishing on size composition and diversity of demersal fish communities. ICES J. Mar. Sci. 57: 558-571.

Binduo X., Xianshi S. 2005. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985–2002. Fish. Res. 71: 79-91.

Blanchard J.L., Jennings S., Law R., Castle M.D., McCloghrie P., Rochet M.J., Benoit E. 2009. How does abundance scale with body size in coupled size-structured food webs? J. Anim. Ecol. 78: 270-280. PMid:19120607

Blanchard J.L., Law R., Castle M.D., Jennings S. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theor. Ecol. 4(3): 289-300.

Blanco J.M., Echevarría F., García C. 1994. Dealing with size spectra: some conceptual and mathematical problems. Sci. Mar. 58: 17-29.

Blumenshine S.C., Lodge D.M., Hodgson J.R. 2000. Gradient of fish predation alters body size distributions of lake benthos. Ecology 81(2): 374-386.

Borgmann U. 1983. Effect of somatic growth and reproduction on biomass transfer up pelagic food web as calculated from particle-size-conversion efficiency. Can. J. Fish. Aquat. Sci. 44: 136-140.

Borgmann U. 1985. Predicting the effect of toxic substances on pelagic ecosystems. Sci. Total Environ. 44: 111-121.

Borgmann U. 1987. Models on the shape of, and biomass flow up, the biomass size-spectrum. Can. J. Fish. Aquat. Sci. 44(suppl. 2): 136-140.

Borgmann U., Whittle D.M. 1983. Particle-size-conversion efficiency and contaminant concentrations in Lake Ontario biota. Can. J. Fish. Aquat. Sci. 40: 328-336.

Boudreau P.R., Dickie L.M., Kerr S. 1991. Body-size spectra of production and biomass as system-level indicators of ecological dynamics. J. Theor. Biol. 152: 329-339.

Boudreau P.R., Dickie L.M. 1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49: 1528-1538.

Brose U., Berlow E.L., Martinez N.D. 2005. Scaling up keystone effects from simple to complex ecological networks. Ecol. Lett. 8: 1317-1325.

Brose U., Williams R.J., Martinez N.D. 2006. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9: 1228-1236. PMid:17040325

Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771-1789.

Brucet S., Boix D., López-Flores R., Badosa A., Moreno-Amich R., Quintana X.D. 2006. Size and species diversity of zooplankton communities in fluctuant Mediterranean salt marshes. Estuar. Coast. Shelf Sci. 67: 424-432.

Camacho J., Sole R.V. 2001. Scaling in ecological size spectra. Europhys. Lett. 55(6): 774-780.

Capitán J.A., Delius G.W. 2010. Scale-invariant model of marine population dynamics. Physical Review E 81: 061901. PMid:20866434

Choi J.S., Mazumder A., Hansell R.I.C. 1999. Measuring perturbation in a complicated, thermodynamic world. Ecol. Model. 117: 143-158.

Clauset A., Shalizi C.R., Newman M.E.J. 2009. Power-law distributions in empirical data. SIAM Rev. 51: 661-703.

Cousins S.H. 1985. Ecologists build pyramids again. New Scient. 106: 50-54.

Cury P., Shannon L., Shin Y. 2003. The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M., Valdimarsson G. (eds), Responsible fisheries in the marine ecosystem. FAO, Rome, pp. 103-123.

Daan N., Gislason H., Pope J.G., Rice J.C. 2005. Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES J. Mar. Sci. 62: 177-188.

de Bruyn A.M.H., Marcogliese D.J., Rasmussen J.B. 2002. Altered body size distributions in a large river fish community enriched by sewage. Can. J. Fish. Aquat. Sci. 59: 818-828.

DeAngelis D.L., Goldstein R.A., O'Neill R.V. 1975. A model for trophic interactions. Ecology 56: 881-892.

Dickie L.M., Kerr S.R., Boudreau P.R. 1987. Size-dependent processes underlying regularities in ecosystem structure. Ecol. Monogr. 57: 233-250.

Dimech, M., Camilleri, M.,Hiddink, J.G., Kaiser M.J., Ragonese S., Schembri P.J. 2008. Differences in demersal community structure and body-size spectra within and outside the Maltese Fishery Management Zone. Sci. Mar. 72(4): 669-682.

Drgas A., Radziejewska T., Warzocha J. 1998. Biomass size Spectra of near-shore shallow-water benthic communities in the Gulf of Gdansk (Southern Baltic Sea). Mar. Ecol. 19(3): 209-228.

Echevarría F., Carrillo P., Jimenez F., Sanchez-Castillo P., Cruz Pizarro L., Rodriguez J. 1990. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). J. Plankton Res. 12(2): 415-422.

Finlay K., Beisner B.E., Patoine A., Pinel-Alloul B. 2007. Regional ecosystem variability drives the relative importance of bottomup and top-down factors of zooplankton size spectra. Can. J. Fish. Aquat. Sci. 64: 516-529.

Gaedke U. 1993. Ecosystem analysis based on biomass-size distributions: a case study of a plankton community in a large lake. Limnol. Oceanogr. 38: 112-127.

Garcia S.M., Kolding J., Rice J., Rochet M.J., Zhou S., Arimoto T., Beyer J.E., Borges L., Bundy A., Dunn D., Fulton E.A., Hall M., Heino M., Law R., Makino M., Rijnsdorp A.D., Simard F., Smith A.D.M. 2012. Reconsidering the consequences of selective fisheries. Science 335(6072): 1045-1047. PMid:22383833

Gislason H., Rice J. 1998. Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES J. Mar. Sci. 55: 362-370.

Gobert B. 1994. Size structures of demersal catches in a multispecies multigear tropical fishery. Fish. Res. 19:87-104.

Gómez-Canchong P., Qui-ones R.A., Brose U. 2013. Robustness of normalized biomass size-structure across ecological networks. Theor. Ecol. 6: 45-56.

Gómez-Canchong P., Qui-ones R.A., Manjarrés L.M. 2011. Size structure of a heavily fished benthic/demersal community by shrimp trawling in the Colombian Caribbean Sea. Lat. Am. J. Aquat. Res. 39(1): 43-55.

Jennings S., Dinmore T.A., Duplisea D.E., Warr K.J., Lancaster J.E. 2001. Trawling disturbance can modify benthic production processes. J. Anim. Ecol. 70: 459-475.

Jennings S., Dulvy N.K. 2005. Reference points and reference directions for size-based indicators of community structure. ICES J. Mar. Sci. 62: 397-404.

Jennings S., Kaiser M.J. 1998. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34: 201-352.

Kerr S.R., Dickie L.M. 2001. Biomass Spectrum. Columbia University Press.

Law R., Plank M.J., James A., Blanchard J.L. 2009. Size spectra dynamics from stochastic predation and growth of individuals. Ecology 90(3): 802-811. PMid:19341149

Lundvall D., Svanbäck R., Persson L., Byström P. 1999. Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can. J. Fish. Aquat. Sci. 56: 1285-1292.

Macpherson E., Gordoa A., García-Rubies A. 2002. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuar. Coast. Shelf Sci. 55: 777-788.

Macpherson E., Gordoa A. 1996. Biomass spectra in benthic fish assemblages in the Benguela system. Mar. Ecol. Prog. Ser. 138: 27-32.

Makarieva A.M., Gorshkov V.G., Li B.L. 2004. Body size, energy consumption and allometric scaling: a new dimension in the diversity-stability debate. Ecol. Complex. 1: 139-175.

Mara-ón E., Cerme-o P., Rodríguez J., Zubkov M.V., Harris R.P. 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnol. Oceanogr. 52(5):>

McAbendroth L., Ramsay P.M., Foggo A., Rundle S.D., Bilton D.T. 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279-290.

MoloneyC.L., Field J.G. 1985. Use of particle-size data to predict potential pelagic-fish yields of some southern African areas. S. Afr. J. Mar. Sci. 3: 119-128.

Murawski S.A., Idoine J.S. 1992. Multispecies size composition: A conservative property of exploited fishery systems? J. Northw. Atl. Fish. Sci. 14: 79-85.

Odum E.P. 1971. Fundamentals of Ecology. Third ed. Saunders, Philadelphia.

Pareto V. 1897. Cours d'economie politique. In: Busino G. (ed.) 1964. OEuvres complètes, Busino, vol. 1, Genève.

Pauly D., Christensen V. 1995. Primary production required to sustain global fisheries. Nature (374): 255-257.

Peterson I., Wroblewski J.S. 1984. Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41: 1117-1120.

Platt T. 1985. Structure of the marine ecosystem: Its allometric basis. In: Ulanowicz R.E., Platt T. (eds), Ecosystem theory for biological oceanography. Can. Bull. Fish. Aquat. Sci. 213: 55-64.

Platt T., Denman K. 1977. Organization in the pelagic ecosystem. Helgol. Wiss. Meresunter. 30: 575-581.

Platt T., Denman K. 1978. The structure of the pelagic marine ecosystems. Rapp. Proc.-Verb. Reun. Cons. Perm. Int. Explor. Mer. 173: 60-65.

Pope J.D., Stokes T.K., Murawski S.A., Idoine S.I. 1987. A comparison of fish size composition in the North Sea and on Georges Bank. In: Wolff W., Soeder C.J., Drepper F.R. (eds), Ecodynamics, Contributions to Theoretical Ecology. Springer-Verlag, Berlin, pp. 146-152.

Quintana X.D., Comín F.A., Moreno-Amich R. 2002. Biomass-size spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Empordà wetlands, NE Spain). J. Plankton Res. 24: 1149-1161.

Quintana X.D., Brucet S., Boix D., López-Flores R., Gascón S., Badosa A., Sala J., Moreno-Amich R., Egozcue J.J. 2008. A nonparametric method for the measurement of size diversity with emphasis on data standarization. Limnol Oceanogr: Meth 6: 75-86.

Quiñones R.A. 1994. A comment on the use of allometry in the study of pelagic ecosystem processes. Sci. Mar. 58: 11-16. Qui-ones R.A., Platt T., Rodríguez J. 2003. Patterns of biomass size spectra from oligotrophic waters of the Northwest Atlantic. Prog. Oceanogr. 57: 405-427.

Quiroga E., Qui-ones R.A., Palma M., Sellanes J., Gallardo V.A., Gerdes D., Rowe G. 2005. Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar. Coast. Shelf Sci. 62: 217-231.

Real L.A. 1977. Kinetics of functional response. Am. Nat. 111: 289-300.

Rice J., Gislason H. 1996. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models. ICES J. Mar. Sci. 53: 1214-1225.

Robson B.J., Barmuta L.A., Fairweather P.G. 2005. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56: 1-11.

Rochet M.J., Benoît E. 2011. Fishing destabilizes the biomass flow in the marine size spectrum. Proc. R. Soc. B

Rodriguez J. 1994. Some comments on the size based structural analysis of the pelagic ecosystem. Sci. Mar. 58: 1-10.

Rodriguez J., Mullin M. 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31(2): 361-370.

San Martin E., Harris R.P., Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res. Part II 53: 1560-1572.

Schwinghamer P. 1985. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. In: Gibbs P.E. (ed.). Proceedings of the 19th European Marine Biology Symposium, September 1984, pp. 347-360.

Sheldon R.W., Prakash A., Sutcliffe Jr W.H. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327-340.

Sheldon R.W., Sutcliffe Jr W.H., Prakash A. 1977. Structure of pelagic food chain and relationships between plankton and fish production. J. Fish. Res. Board Can. 34: 2334-2353.

Shin Y.J., Cury P. 2004. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can. J. Fish. Aquat. Sci. 61: 414-431.

Shin Y.J., Rochet M.J., Jennings S., Field J.G., Gislason H. 2005. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar.Sci. 62: 384-396.

Silvert W., Platt T. 1978. Energy flux in the pelagic ecosystem: a time dependent equation. Limnol. Oceanogr. 18: 813-816.

Silvert W., Platt T. 1980. Dynamic energy-flow model of the particle size-distribution in pelagic ecosystems. In: Kerfoot W.C. (ed.), Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, New Hampshire, pp. 754-763.

Skalsk, G.T., Gillia, J.F, 2001. Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82: 3083-3092.[3083:FRWPIV]2.0.CO;2

Sprules W.G., Goyke A.P. 1994. Size-Based Strudure and Production in the Pelagia of Lakes Ontario and Michigan. Can. J. Fish. Aquat. Sci. 51: 2603-2611.

Sprules W.G., Munawar M. 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789-1794.

Thiebaux M.L., Dickie L.M. 1992. Models of aquatic biomass size spectra and the common structure of their solutions. J. Theor. Biol. 159: 147-161.

Thiebaux M.L., Dickie L.M. 1993. Structure of the body-size spectrum of the biomass in aquatic ecosystems: A consequence of allometry in predator-prey interactions. Can. J. Fish. Aquat. Sci. 50:1308-1317.

Thomann R.V. 1979. An analysis of PCB in Lake Ontario using a size-dependent food chain model. In: Scavia D., Robertson A. (eds), Perspectives on Lake Ecosystem Modelling. Ann. Arbor Sci. 293-320.

Thomann R.V. 1981. Equilibrium model of fate of microcontaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci. 38: 280-296.

Vidondo B., Prairie Y., Blanco J.M., Duarte C.M. 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnol. Oceanogr. 42(1): 184-192.

Wang H., Morrison W., Singh A., Weiss H. 2009. Modeling inverted biomass pyramids and refuges in ecosystems. Ecol. Model. 220: 1376-1382.

Warwick R.M., Collins N.R., Gee J.M., George C.L. 1986. Species size distributions of benthic and pelagic Metazoa: Evidence for interaction. Mar. Ecol. Prog. Ser. 34: 63-68.

White E.P., Ernest S.K.M., Kerkhoff A.J., Enquist B.J. 2007 Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22: 323-330. PMid:17399851

Williams R.J. Martinez N.D. 2000. Simple rules yield complex webs. Nature 404: 180-183. PMid:10724169

Williams R.J., Martinez N.D. 2004. Stabilization of chaotic and non permanent food web dynamics. Eur. Phys. J. B. 38: 297-303.

Yodzis P., Innes S. 1992. Body size and consumer-resource dynamics. Am. Nat. 139: 1151-1175.

Yvon-Durocher G., Montoya J.M., Trimmer M., Woodward G. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Chang. Biol. 17: 1681-1694.

Zhou M. 2006. What determines the slope of a plankton biomass spectrum? J. Plankton Res. 28(5): 437-448.

Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support