Scientia Marina, Vol 77, No S1 (2013)

Picophytoplankton and carbon cycle on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula)


https://doi.org/10.3989/scimar.03732.27D

Mariana Ribas-Ribas
Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz - School of Ocean and Earth Science, National Oceanography Centre , Spain

Cristina Sobrino
Departamento de Ecoloxía e Bioloxía Animal, Facultad de Ciencias, Universidad de Vigo , Spain

Bibiana Debelius
Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Spain

Luís M. Lubián
Instituto de Ciencias Marinas de Andalucía, CSIC , Spain

Rocio Ponce
Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Spain

Abelardo Gómez-Parra
Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Spain

Jesús M. Forja
Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Spain

Abstract


Four surveys (Jun’06 and Nov’06; Feb’07 and May’07) were carried out on the northeastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula) to relate the spatio-temporal distribution of the carbon cycle parameters (dissolved inorganic carbon and dissolved organic carbon) to picophytoplankton biomass and community composition. In addition, the net ecosystem production and the picophytoplankton contribution to the air-sea CO2 exchange process were investigated. The results showed that chlorophyll-a, carbon cycle parameters and picophytoplankton composition showed large seasonality, and the Guadalquivir Estuary plays an important role in the contribution of nutrient and suspended particular material over the year. Regarding picophytoplankton composition, the flow cytometry analysis demonstrated that Prochlorococcus and Synechococcus were the main populations in the studied area and their temporal and spatial distributions were complementary: the Prochlorococcus population showed its maximum concentration in May’07 and Jun’06 and in the surface oceanic water, whereas the Synechococcus population was at its maximum during Feb’07 and Nov’06, and off the Guadalquivir Estuary and Bay of Cádiz. In addition, a relationship between the studied parameters and the fugacity of CO2 was also observed, suggesting that primary production is an important factor in the regulation of this parameter in the studied area. The calculated carbon budget showed that the area acts as a carbon sink on an annual basis.

Keywords


carbon cycle; chlorophyll-a; picophytoplankton; seasonal variations; coastal zone; Guadalquivir Estuary; Gulf of Cádiz

Full Text:


PDF

References


Agawin N.S.R., Agustí S. 1997. Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwest Mediterranean Sea. J. Plankton Res. 19(11): 1599-1615. http://dx.doi.org/10.1093/plankt/19.11.1599

Agawin N.S.R., Duarte C.M., Agustí S. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170: 45-53. http://dx.doi.org/10.3354/meps170045

Agawin N.S.R., Duarte C.M., Agustí S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591-600. http://dx.doi.org/10.4319/lo.2000.45.3.0591

Anfuso E., Ponce R., Castro G.C., Forja J.M. 2010. Coupling between the thermohaline, chemical and biological fields during summer 2006 in the northeast continental shelf of the Gulf of Cádiz (SW Iberian Peninsula). Sci. Mar. 74S1: 47-56.

Anfuso E. 2011. Nutrients dynamic in the coastal shelf of the Gulf of Cádiz. Ph.D thesis, Univ. Cádiz, 136 pp.

Arrigo K.R., Van Dijken L. 2007. Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: A model analysis. J. Geophys. Res. 112: C03020. http://dx.doi.org/10.1029/2006JC003492

Azzaro M., La Ferla R., Maimone G., Monticelli L.S., Zaccone R., Civitarese G. 2011. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit). Cont. Shelf Res., doi: 10.1016/j. csr.2011.07.011.

Bates N.R., Hansell D.A. 1999. A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda. Mar. Chem. 67(1-2): 1-16. http://dx.doi.org/10.1016/S0304-4203(99)00045-6

Benson B.B., Krause D.J. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29(3): 620-632. http://dx.doi.org/10.4319/lo.1984.29.3.0620

Cerino F., Bernardi Aubry F., Coppola J., La Ferla R., Maimone G., Socal G., Totti C. 2011. Spatial and temporal variability of pico-, nano- and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea). Cont. Shelf Res. doi: 10.1016/j.csr.2011.06.006. http://dx.doi.org/10.1016/j.csr.2011.06.006

Chiang K.-P., Kuo M.-C., Chang J., Wang R.-H., Gong G.-C. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont. Shelf Res. 22: 3-13. http://dx.doi.org/10.1016/S0278-4343(01)00067-X

Del Valls T.A., Dickson A.G. 1998. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ("tris") in synthetic sea water. Deep-Sea Res. Part I 45, 1541-1554. http://dx.doi.org/10.1016/S0967-0637(98)00019-3

Dickson A.G. 1990. Standard potential of the (AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodynam. 22: 113-127. http://dx.doi.org/10.1016/0021-9614(90)90074-Z

Dickson A.G., Millero F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. Part A 34: 1733-1743. http://dx.doi.org/10.1016/0198-0149(87)90021-5

Donald K.M., Joint I., Rees A.P., Wookward E.M.S., Savidge G. 2001. Uptake of carbon, nitrogen and phosphorus by phytoplankton along the 20ºW meridian in the NE Atlantic between 57.5ºN and 37ºN. Deep-Sea Res. Part II 48: 873-897. http://dx.doi.org/10.1016/S0967-0645(00)00102-8

DuRand M.D., Olson R.J., Chisholm S.W. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-Sea Res. Part II 48: 1983-2003. http://dx.doi.org/10.1016/S0967-0645(00)00166-1

Echevarría F., Zabala L., Corzo A., Navarro G., Prieto L., Macías D. 2009. Spatial distribution of autotrophic picoplankton in relation to physical forcings: The Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study. J. Plankton Res. 31(11): 1339-1351. http://dx.doi.org/10.1093/plankt/fbp070

Furnas M., Mitchell A., Skuza M., Brodie J. 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51: 253-265. http://dx.doi.org/10.1016/j.marpolbul.2004.11.010 PMid:15757726

García-Fernández J.M., de Marsac N.T., Diez J. 2004. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev. 68(4): 630-638. http://dx.doi.org/10.1128/MMBR.68.4.630-638.2004 PMid:15590777 PMCid:539009

García-Lafuente J., Ruiz J. 2007. The Gulf of Cádiz pelagic ecosystem: A review. Prog. Oceanogr. 74(2-3): 228-251. http://dx.doi.org/10.1016/j.pocean.2007.04.001

Gordon Jr. D.C. 1969. Examination of methods of particulate organic carbon analysis. Deep-Sea Res. 16: 661-665.

Grasshoff K., Ehrhardt M., Kremling K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, Germany, 419 pp.

Huertas I.E., Navarro G., Rodríguez-Gálvez S., Prieto L. 2005. The influence of phytoplankton biomass on the spatial distribution of carbon dioxide in surface sea water of a coastal area of the Gulf of Cádiz (southwestern Spain). Can. J. Bot. 83(7): 929-940. http://dx.doi.org/10.1139/b05-082

Huertas I.E., Navarro G., Rodríguez-Gálvez S., Lubián L.M. 2006. Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cádiz (SW Spain). Deep-Sea Res. Part II 53(11-13): 1344-1362. http://dx.doi.org/10.1016/j.dsr2.2006.03.010

Jochem F. 1988. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). J. Plankton Res. 10(5): 1009-1022. http://dx.doi.org/10.1093/plankt/10.5.1009

Kristiansen S., Farbrot T., Naustvoll L. 2001. Spring bloom nutrient dynamics in the Oslofjord. Mar. Ecol. Prog. Ser. 219: 41-49. http://dx.doi.org/10.3354/meps219041

La Ferla R., Azzaro M., Budillon G., Caroppo C., Decembrini F., Maimone G. 2010. Distribution to the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Adv. Oceanogr. Limnol. 1(2): 235-257. http://dx.doi.org/10.1080/19475721.2010.541500

Li W.K.W, Subba Rao D.V., Smith J.C., Cullen J.J. Irwin B. and Platt T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292-295. http://dx.doi.org/10.1126/science.219.4582.292 PMid:17798278

Li W.K.W., Harrison W.G., Head E.J.H. 2006. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc., B. 273: 1953-1960. http://dx.doi.org/10.1098/rspb.2006.3529 PMid:16822757 PMCid:1634774

Loring D.H., Rantala R.T.T. 1991. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Rev. 32: 235-283. http://dx.doi.org/10.1016/0012-8252(92)90001-A

Macías D., Navarro G., Bartual A., Echevarría F., Huertas I.E. 2009. Primary production in the Strait of Gibraltar: Carbon fixation rates in relation to hydrodynamic and phytoplankton dynamics. Est. Coast. Shelf Sci. 83: 197-210. http://dx.doi.org/10.1016/j.ecss.2009.03.032

Mann K.H., Lazier J.R.N. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Publishing Ltd., Oxford, 469 pp.

Marie D., Simon N., Vaulot D. 2005. Phytoplankton cell counting by flow cytometry. In: Andersen R. (ed.), Algal culturing techniques. Academic Press (vol. 27), pp. 253-267.

Mehrbach C., Culberson C.H., Hawley J.E., Pytkowicz R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897-907. http://dx.doi.org/10.4319/lo.1973.18.6.0897

Mura M.P., Agustí S., del Giorgio P.A., Gasol J.M., Vaqué D., Duarte C.M. 1996. Loss-controlled phytoplankton production in nutrient-poor litoral waters of the NW Mediterranean: in situ experimental evidence. Mar. Ecol. Prog. Ser. 130: 213-219. http://dx.doi.org/10.3354/meps130213

Navarro G., Ruiz J., 2006. Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images. Deep-Sea Res. Part II 53(11-13): 1241-1260. http://dx.doi.org/10.1016/j.dsr2.2006.04.014

Navarro G., Ruiz J., Huertas I. E., García C. M., Criado-Aldeanueva F., Echevarría F. 2006. Basin-scale structures governing the position of the deep fluorescence maximum in the Gulf of Cádiz. Deep-Sea Res. Part II 53(11-13): 1261-1281. http://dx.doi.org/10.1016/j.dsr2.2006.04.013

Prieto L., Navarro G., Rodríguez-Gálvez S., Huertas I. E., Naranjo J. M., Ruiz, J. 2009. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont. Shelf Res. 29: 2122-2137. http://dx.doi.org/10.1016/j.csr.2009.08.007

Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011a. Air-sea CO2 fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem. 123: 56-66. http://dx.doi.org/10.1016/j.marchem.2010.09.005

Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011b. Seasonal distribution of the inorganic carbon system and net ecosystem production in the north eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Cont. Shelf Res. 31: 1931-1942. http://dx.doi.org/10.1016/j.csr.2011.09.003

Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011c. Seasonal sea-surface CO2 fugacity in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). In: Komori S., McGillis W., Kurose R. (eds.), Gas transfer at water surfaces 2010. Kyoto University Press, pp. 394-405.

Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011d. Spatio-temporal variability of dissolved organic carbon and nitrogen in a coastal area affected by river input: the north eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem. 126: 295-308. http://dx.doi.org/10.1016/j.marchem.2011.07.003

Schlitzer R. 2009. Ocean Data View, http://odv.awi.de.

Sobrino C., Montero O., Lubián, L.M. 2004. UV-B radiation increases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana. Aquat. Sci. 66: 421-429. http://dx.doi.org/10.1007/s00027-004-0731-8

Suratman S., Weston K., Grennwook N., Sivyer D.B., Pearce D.J., Jickell T. 2010. High frequency measurements of dissolved inorganic and organic nutrients using instrumented moorings in the southern and central North Sea. Est. Coast. Shelf Sci. 87: 631-639. http://dx.doi.org/10.1016/j.ecss.2010.03.001

Taylor A.H., Geider R.J., Gilbert F.J.H. 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modeling study. Mar. Ecol. Prog. Ser. 152: 51-66. http://dx.doi.org/10.3354/meps152051

Vargas J.M., García-Lafuente J., Delgado J., Criado F. 2003. Seasonal and wind-induced variability of Sea Surface Temperature patterns in the Gulf of Cádiz. J. Mar. Syst. 38(3-4): 205-219. http://dx.doi.org/10.1016/S0924-7963(02)00240-3

Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5): 7373-7382. http://dx.doi.org/10.1029/92JC00188

Weiss R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2(3): 203-215. http://dx.doi.org/10.1016/0304-4203(74)90015-2

Worden A.Z., Nolan J.K., Palenik B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49(1): 168-179. http://dx.doi.org/10.4319/lo.2004.49.1.0168

Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 101: 23-32.

Zubkov M.V., Fuchs B.M., Tarran G.A., Burkill P.H., Amann R. 2003. High rate of uptake of organic nitrogen compounds by Prochlorococcus Cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69(2): 1299-1304. http://dx.doi.org/10.1128/AEM.69.2.1299-1304.2003 PMid:12571062 PMCid:143617




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es