Scientia Marina, Vol 76, No 4 (2012)

Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition

Ana L. Ibáñez
Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Hidrobiología , Mexico

Elaine Espino-Barr
Instituto Nacional de la Pesca (INAPESCA), Centro Regional de Investigación Pesquera (CRIP-Manzanillo) , Mexico

Manuel Gallardo-Cabello
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México , Mexico


Fish scale shape was used to identify geographic variants among Lutjanidae (Lutjanus argentiventris, L. guttatus and L. peru). Specimens were collected from three different geographic areas, north to south of the tropical Pacific coast of Mexico: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de Campos (CC). Configuration of landmark coordinates of fish scales were scaled, translated and rotated using generalized procrustes analysis, followed by principal components analysis of resulting shape coordinates. Principal component scores were submitted to cross-validated discriminant analysis to determine the efficacy of scale landmarks for discrimination by geographic variants. This was done with shape and form (shape plus size). PV and MA were recognized as one population different from the CC sampling area. Using only shape (without size), identification rates predicted geographic variant membership much better than chance (91.3%, 70.6% and 85.4% for L. argentiventris, L. guttatus and L. peru, respectively), and taking size into account, classification is somewhat improved (90.6%, 80.1% and 87.5% for L. argentiventris, L. guttatus and L. peru, respectively). Consistency of the two populations for the three species shows non-fortuitous events. Population discrimination confirmed previous genetic studies that show a zoogeographic barrier between the North Equatorial Current and the California Current. The method is non-destructive, fast and less expensive than genetic analysis, thus allowing screening of many individuals for traceability of fish.


scale shape; population discrimination; fish traceability; Lutjanidae; Mexican Pacific; geometric morphometrics

Full Text:



Allen G.R. 1985. FAO Species catalogue. Snappers of the World. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fisheries Synopsis 6(125): 1-208.

Begg G.A., Waldman, J.R. 1999. An holistic approach to fish stock identification. Fish. Res. 43: 35-44.

Bookstein F.L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE T. Pattern. Anal. 11: 567-585.

Cowen R.K., Gawarkiewic G., Pineda J., Thorrold S.R., Werner F.E. 2007. Population connectivity in marine systems An overview. Oceanogr. 20: 14-21.

Domínguez-López M., Uribe-Alcocer M., Díaz-Jaimes P. 2010. Phylogeography and historical demography of the Pacific sierra mackerel (Scomberomorus sierra) in the Eastern Pacific. BMC Genetics 11: 1-12.

Dryden I.L., Mardia K.V. 1993. Multivariate shape analysis. Sankya Ser. A 55: 460-480.

Dryden I.L., Mardia K.V. 1998. Statistical shape analysis. John Wiley and Sons, London. 347 pp.

Espino-Barr E., Puente-Gómez M., Cabral-Solís E.G., Garcia-Boa A. 2010. Tallas de reproducción de 15 especies de la pesca ribereña en Jalisco. V Foro Científico de Pesca Ribereña, Boca del Río, Veracruz, 7 a 9 de septiembre, 77 pp.

Espino-Barr E., Cabral-Solís E.G., Garcia-Boa A., Puente-Gómez M., Miranda-Carrillo M. 2011. La captura de pargos y huachinango en el Pacífico centro, México. Memorias del III Reunión de la Sociedad Mexicana de Pesquerías, Mazatlán, Sinaloa, México, 145 pp.

Farias I., Vieira A.R., Gordo L., Figueiredo I. 2009. Otolith shape analysis as a tool for stock discrimination of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Pisces: Trichiuridae), in Portuguese waters. Sci. Mar. 73: 47-53.

Fernández A., Gallegos A., Zavala J. 1992. Carta Oceanográfica física 2, aspectos regionales. Atlas Nacional de México. México, D. F. Instituto de Geografía. National University of México. Vol. II.

Franco-Gordo C., Godínez-Domínguez E., Suarez-Morales E. 2002. Larval fish assemblages in waters off the central Pacific coast of Mexico. J. Plank. Res. 24: 775-784.

Gallardo-Cabello M., Sarabia-Méndez M., Espino-Barr E., Anislado-Tolentino V. 2010. Biological aspects of Lutjanus peru in Bufadero Bay, Michoacán, México: growth, reproduction and condition factors. Rev. Biol. Mar. Oceanogr. 45: 205-215.

Garduño-Paz M.V., Demetriou M., Adams C.E. 2010. Variation in scale shape among alternative sympatric phenotypes of Arctic charr Salvelinus alpinus from two lakes in Scotland. J. Fish Biol. 76: 1491-1497. PMid:20537027

Hong-Yi G., Kai W., Wen-Qiao T., Jia-Ming W., Wen-Yin C. 2010. Sibling species discrimination for Chinese genus of Coilia fishes based on sagittal otolith morphology. Acta Zootaxon. Sinica 35: 127-134.

Ibáñez A.L., Lleonart J. 1996. Relative growth and comparative morphometrics of Mugil cephalus L. and M. curema V. in the Gulf of Mexico. Sci. Mar. 60: 361-368.

Ibáñez A.L., Cowx I.G., O'Higgins P. 2007. Geometric morphometric analysis of fish scales for identifying genera, species and local populations within the Mugilidae. Can. J. Fish. Aquat. Sci. 64: 1091-1100.

Ibáñez A.L., Cowx I.G., O'Higgins P. 2009. Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool. J. Linn. Soc. 155: 834-844.

Ibáñez A.L., O'Higgins P. 2011. Identifying fish scales: the influence of allometry on scale shape and classification. Fish. Res. 109: 54-60.

Ibáñez A. L., Pacheco-Almanzar E., Cowx I.G. 2012. Does compensatory growth modify fish scale shape? Environ. Biol. Fish. 94: 477-482.

Jarvis R.S., Klodowski H.F., Sheldon S.P. 1978. New method of quantifying scale shape and an application to stock identification in Walleye (Stizostedion vitreum vitreum). T. Am. Fish. Soc. 107: 528-534.<528:NMOQSS>2.0.CO;2

Kent J.T. 1994. The complex Bingham distribution and shape analysis. J.R. Statist. Soc. B 56: 285-299.

Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306.

Marcus L.F., Corti M., Loy A., Naylor G.J.P., Slice D.E. (eds). 1996. Advances in Morphometrics. Nato ASI Series. Vol. 284, Plenum Press, New York, 587 pp.

Mitteroecker P., Gunz P. 2009. Advances in Geometric Morphometrics. Evol. Biol. 36: 235-247

O'Higgins P., Chadfield P., Jones N. 2001. Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus. J. Zool. 254: 337-357.

O'Higgins, P., Jones, N. 2007. Morphologika2 v2.5. Hull York Medical School. Available from downloadmorphologica (accessed 10 March 2010).

Palumbi S.R. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13: 146-158.[0146:PGDCAT]2.0.CO;2

Richards R.A., Esteves C. 1997. Use of scale morphology for discriminating wild stocks of Atlantic striped bass. T. Am. Fish. Soc. 126: 919-925.<0919:UOSMFD>2.3.CO;2

Rohlf, F.J. 2006. Tps Series. Department of Ecology and Evolution, State University, N.Y., Stony Brook. Available from (accessed 8 July 2010).

SAGARPA. 2010. Anuario estadístico de pesca 2009. Mazatlán, Sinaloa. Comisión Nacional de Acuacultura y Pesca, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación,

Sale P.F., Van Lavieren H., Ablan Lagman M.C., Atema J., Butler M., Fauvelot C., Hogan J.D., Jones G.P., Lindeman K.C., Paris C.B., Steneck R., Stewart H.L. 2010. Preserving Reef Connectivity: A Handbook for Marine Protected Area Managers. Melbourne, Australia. Connectivity Working Group, Coral Reef Targeted Research and Capacity Building for Management Program, UNU-INWEH.

Sarabia-Méndez M., Gallardo-Cabello M., Espino-Barr E., Anislado-Tolentino V. 2010. Characteristics of population dynamics of Lutjanus guttatus (Pisces: Lutjanidae) in Bufadero Bay, Michoacán, México. Hidrobiológica 20: 149-158.

Shoji J., Tsutomu M., Tanaka M. 2005. Larval growth and mortality of Japanese Spanish mackerel (Scomberomorus niphonius) in the central Seto Inland Sea, Japan. J. Mar. Biol. Ass. U.K. 85: 1255-1261.

Sparre P., Venema S.C. 1995. Introducción a la evaluación de recursos pesqueros Tropicales. Parte 1. Manual. Valparaíso, Chile. FAO Documento Técnico de Pesca.

Swain D.P., Foote C.J. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43: 113-128.

Waldman J.R. 1999. The importance of comparative studies in stock analysis. Fish. Res. 43: 237-246.

Watkinson D.A., Gillis D.M. 2005. Stock identification of Lake Winnipeg walleye based on Fourier and wavelet description of scale outline signals. Fish. Res. 72: 193-203.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support