Scientia Marina, Vol 76, No 4 (2012)

On the intraspecific variation in morphometry and shape of sagittal otoliths of common sardine, Strangomera bentincki, off central-southern Chile

Sandra Curin-Osorio
Facultad de Ciencias, Universidad Católica de la Santísima Concepción - COPAS Sur-Austral, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanografía, Universidad de Concepción , Chile

Luis A. Cubillos
COPAS Sur-Austral, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanografía, Universidad de Concepción , Chile

Javier Chong
Facultad de Ciencias, Universidad Católica de la Santísima Concepción , Chile


Size and shape of fish otoliths are species-specific, but some species also display intraspecific variations. The common sardine, Strangomera bentincki, is a small pelagic fish inhabiting a seasonal upwelling ecosystem off central-southern Chile, having two discrete spawning sites along its latitudinal distribution. Otoliths of specimens were collected from commercial catches in Talcahuano and Corral, representing the central and south spawning zones. On the basis of otolith images, size-based shape descriptors were used to detect ontogenetic variation, and morphometric variables (length, breadth, area, perimeter and weight) were used to detect geographical differences in size and shape of otoliths. Outline analysis was studied on the basis of elliptic Fourier descriptors through multivariate statistical procedures. Size-based shape descriptors showed that otolith shape starts to be stable for fish larger than 12 cm total length, which keep an elliptical form. Morphometric variables for fish larger than 12 cm revealed intraspecific variation between central and south zones, which were associated with otolith weight and breadth. Outline analysis did not reveal significant spatial differences, but extreme intraspecific variation was due to the antirostrum, excisure, and posterior part of otoliths. Intraspecific variation in otolith size could be linked to differences in each spawning habitat and related to geographical origin, whose differences are not clearly identified. It is concluded that intraspecific variability in morphometric variables of sardine otoliths revealed geographic differences in size that are not attributable to allometric effects, and that otolith shape was similar between specimens from different geographic origin.


otolith; outline; shape descriptors; intraspecific; Fourier; sardine; pelagic

Full Text:



Agüera A., Brophy D. 2010. Use of sagittal otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish. Res. 110: 465-471.

Barnett-Johnson R., Teel D.J., Casillas E. 2010. Genetic and otolith isotopic markers identify salmon populations in the Columbia river at broad and fine geographic scales. Environ. Biol. Fish. 89: 533-546.

Begg G., Brown R. 2000. Stock identification of haddock Melano grammus aeglefinus on Georges Bank based on otolith shape analysis. Trans. Am. Fish. Soc. 129: 935-945.<0935:SIOHMA>2.3.CO;2

Bird J.L., Eppler D.T., Checkley D.M. 1986. Comparisons of herring otolith using Fourier series shape analysis. Can. J. Fish. Aquat. Sci. 43: 1228-1234.

Bolles K.L., Begg G.A. 2000. Distinction between silver hake (Merluccius bilinearis) stocks in US waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull. 98: 451-462.

Campana S., Casselman J. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50: 1062-1083.

Castillo-Jordán C., Cubillos L., Paramo J. 2007. The spatial structure of the co-occurrence of two small pelagic fish spawning off central-south Chile during the year 2005. Aquat. Living. Resour. 20: 77-84.

Claude J. 2008. Morphometrics with R. Springer, New York, 316 pp. PMCid:2230590

Cubillos L., Canales M., Bucarey D., Rojas A., Alarcón R. 1999. Época reproductiva y talla media de primera madurez sexual de Strangomera bentincki y Engraulis ringens en el período 1993-1997, zona centro-sur de Chile (1993-97). Invest. Mar. Valparaíso. 27: 73-85.

Cubillos L., Bucarey D., Canales M. 2002. Monthly abundance estimation for common sardine Strangomera bentincki and anchovy Engraulis ringens in the central southern area off Chile (34-40°S). Fish. Res. 57: 117-130.

Cubillos L.A., Ruiz P., Claramunt G., Gacitúa S., Núñez S., Castro L.R., Riquelme K., Alarcón C., Oyarzún C., Sepúlveda A. 2007. Spawning, daily egg production, and spawning stock biomasa estimation for common sardine (Strangomera bentincki) and anchovy (Engraulis ringens) off central southern Chile in 2002. Fish. Res. 86: 228-240.

Cubillos L.A., Castro L., Claramunt G., Navarro E., Alarcón C., Zuñiga M.J., Castillo-Jordán C., Pedraza M., Rebolledo H. 2010. Evaluación del stock desovante de anchoveta y sardina común en la zona centro-sur, año 2009. Inf. Final FIP 2009-08, 123 pp.

Degens E.T., Deuser W.G., Haedrich R.L. 1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113.

Friedland K.D., Reddin D.G. 1994. The use of otolith morphology in stock discriminations of Atlantic salmon (Salmon salar L). Can. J. Fish. Aquat. Sci. 51: 91-98.

Galleguillos R., Troncoso L., Monsalve J., Ciro O. 1997. Diferenciación poblacional en sardina Chilena Strangomera bentincki (Pisces: Clupeidae) Análisis genético de la variabilidad proteínica. Rev. Chil. Hist. Nat. 70: 351-361.

Galley E.A., Wright P.J., Gibb F.M. 2006. Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES J. Mar. Sci. 63: 1710-1717.

Gauldie R.W. 1988. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. C. 91A: 395-402.

Harder W. 1975. The respiratory organs, W. Harder, Anatomy of fishes. Schweizerbart`sche verlangsbuchhandlung, Stuttgart 287-305.

Härkönen T. 1986. Guide to the otoliths of the bony fishes of the Northeast Atlantic. Danbiu ApS. Biological Consultants. Henningsens Allé 58, DK-2900, Hellerup, Denmark. 256 pp. PMCid:1341548

Hecht T., Appelbaum S. 1982. Morphology and taxonomic significance of the otoliths of some bathypelagic Anguilloidei and Saccopharyngoidei from the Sargasso Sea. Helgol. Meeresunters. 35: 301-308.

Kuhl F.P., Giardina C.R. 1982. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18: 236-258.

Lagardère F., Chaumillon G., Amara R., Heineman G., Lago J. 1995. Examination of otolith morphology and microstructure using laser scanning microscopy. In: Secor DH, Dean J.M., Campana S.E. (eds.). Recent developments in fish otolith research. Columbia: University of South Carolina Press. 68: 7-26.

Lombarte A., Castellón A. 1991. Interespecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool. 69: 2442-2449.

Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306.

Lombarte A., Cruz A. 2007. Otolith size trends in marine communities from different depth strata. J. Fish Biol. 71: 53-76.

Martínez V., Monasterio de Gonzo G. 1991. Clave de determinación de otolitos de algunos peces siluriformes de la provincia de Salta. Rev. Asoc. Cienc. Nat. Litor. 22 (2): 95-118.

Morales-Nin B. 1985. Determination of growth in bony fishes from otolith microstructure. FAO Fish. Techn. Pap. 322, 51 p.

Nolf D. 1985. Otolith piscium. In: H.P. Schultze (ed.). Handbook of paleoichthyology, Gustav Fisher Verlag, New York. 10: 1-145.

Newman S.J., Wright I.W., Rome B.M., Mackie M.C., Lewis P.D., Buckworth R.C., Ballagh A.C., Garret R.N., Stapley J., Broderick D., Ovenden J.R., Welch D.J. 2010. Stock structure of Grey Mackerel, Scomberomorus semifasciatus (Pisces: Scombridae) across northern Australia, based on otolith stable isotope chemistry. Environ. Biol. Fish. 89: 357-367.

Paxton J.R. 2000. Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B. 355: 1299-1303. PMid:11079419

Popper A.N., Lu Z. 2000. Structure-function relationships in fish otolith organs. Fish Res. 46: 15-25.

Pothin K., Gonzalez-Salas C., Chabanet P., Lecomte-Finiger R. 2006. Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. J. Fish Biol. 69: 38-53.

Pullianen E., Korhonen, K. 1994. Sagittal otolith growth patterns in regularly and irregularly spawning burbot, Lota lota, in northern Finland. Environ. Biol. Fish. 40: 149-157.

R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reichenbacher B., Sienknecht U., Ku.chenhoff H., Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias). J. Morphol. 268: 898-915. PMid:17674357

Reichenbacher B., Kamrani E., Esmaelli H.R., Teimori A. 2009. The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environ. Biol. Fish. 86: 507-521.

Schloesser R.W., Neilson J.D., Secor D.H., Rooker J.R. 2010. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from the Gulf of St. Lawrence based on d13C and d18O in otoliths. Can. J. Fish. Aquat. Sci. 67: 563-569.

Secor D.H., Dean J.M., Laban E.H. 1992. Otolith removal and preparation for microstructural examination. Can. Spec. Publ. Fish. Aquati. Sci. 117: 19-57.

Smith M.K. 1992. Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Can. J. Fish. Aquat. Sci. 49: 795-804.

Sobarzo M., Djurfeldt L. 2004. Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile. J. Geophys. Res. 109: c12012, doi:10.1029/2004JC002350.

Tombari A.D. 2008. Sistemática de Atherinopsidae de la República Argentina utilizando caracteres morfológicos y morfométricos, con énfasis en el otolito sagitta. PhD thesis, Universidad de Buenos Aires, Argentina.

Tombari A.D., Volpedo A.V., Echeverria D.D. 2000. Patrones morfológicos de la sagitta de pejerreyes de la ictiofauna argentina. Thalassas 16: 11-19.

Tombari A.D., Volpedo A.V., Echeverria D.D. 2005. Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentinensis (Valenciennes 1835) y O. bonariensis (Valenciennes 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Rev. Chil. Hist. Nat. 78: 623-633.

Torres G.J., Lombarte A., Morales-Nin B. 2000. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merluciidae). Fish. Res. 46: 5-13.

Tracey S.R., Lyle J.M., Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77 (2): 138-147.

Tuset V.M., González J.A., García-Díaz M.M., Santana J.I. 1996. Feeding habits of Serranus cabrilla (Serranidae) in the Canary Islands. Cybium. 20 (2): 161-167.

Tuset V.M., Lombarte A., González J.A., Pertusa J.F., Lorente M.J. 2003. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish Biol. 63: 1491-1504.

Venables W.N., Ripley B.D. 2002. Modern Applied Statistics with S, 4th ed. Springer-Verlag, New York.

Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol. 420-421: 26-32.

Vignon M., Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411: 231-241.

Volpedo A.V., Echeverría D.D. 2000. Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. 1. Peces de importancia comercial. Editorial Dunken, Buenos Aires.

Volpedo A.V. 2001. Estudio de la morfometría de las sagittae en poblaciones de sciaenidos marinos de aguas cálidas del Perú y aguas templado-frías de Argentina. PhD thesis, Universidad de Buenos Aires, Argentina.

Wood S.N., 2006, Generalized additive models. An introduction with R. Chapman and Hall/CRC.

Yañez E., Barbieri M.A., Montecinos A. 1990. Relaciones entre las variaciones del medio ambiente y las fluctuaciones de los principales recursos pelagicos explotados en la zona de Talcahuano, Chile. In: Perspectivas de la actividad pesquera en Chile, Barbieri, M.A. (ed.). Escuela de Ciencias del Mar, UCV, Valparaíso, Chile. 49-62.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support