Scientia Marina, Vol 76, No S1 (2012)

Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

Mikhail Emelianov
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain

Mariona Claret
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain

Eugenio Fraile-Nuez
Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Spain

Maria Pastor
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain

Irene Laiz
Instituto de Ciencias Marinas de Andalucía, CSIC, Spain

Joaquín Salvador
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain

Josep L. Pelegrí
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain

Antonio Turiel
Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC, Spain


Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.


meddy; satellite image; vorticity; thermohaline anomaly; observation in situ

Full Text:



Ambar I., Serra N., Neves F., Ferreira T. 2008. Observations of the Mediterranean undercurrent and eddies in the Gulf of Cadiz during 2001. J. Mar. Syst. 7: 195-220.

Armi L., Hebert D., Oakey N. 1989. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr. 19: 354-370.<0354:TYITLO>2.0.CO;2

Bashmachnikov I., Machin F., Mendonça A., Martins A. 2009. In situ and remote sensing signature of meddies east of the mid-Atlantic ridge. J. Geophyis. Res. 114, C05018: 1-16.

Bell M., R. Forbes, and A. Hines. 2000. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting. J. Mar. Syst. 25: 1-22.

Chelton D.B., deSzoeke R.A., Schlax M.G., El Naggar K., Siwertz N. 1998. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28: 433-460.<0433:GVOTFB>2.0.CO;2

Emelianov M., Fedorov K. 1985. Structure and transformation of intermediate waters of the Mediterranean Sea and Atlantic Ocean, Oceanol. Acad. Sci. USSR. 25: 155-161.

Emelianov M., Font J., Turiel A., Millot C., Sol J., Poulain P., Julià A., Vitrià M. 2006. Transformation of Levantine Intermediate Water tracked by MEDARGO floats in the Western Mediterranean Ocean Sci. 2: 281-290.

Fedorov K. 1986. Intrathermocline eddies in the ocean. Rep. Inst. Oceanol. Acad. Sci. USSR, 150 pp.

Font J., Ballabrera-Poy J., Camps A., Corbella I., Duffo N., Duran I., Emelianov M., Enrique L., Fernández P., Gabarró C., González C., González V., Gourrion J., Guimbard S., Hoareau N., Julià A., Kalaroni S., Konstantinidou A., López de Aretxabaleta A., Martínez J., Miranda J., Monerris A., Montero S., Mourre B., Pablos M., Pérez F., Piles M., Portabella M., Sabia R., Salvador J., Talone M., Torres F., Turiel A., Vall-llossera M., Villarino R., 2012. A new space technology for ocean observation: the SMOS mission. Sci. Mar. 76S1: 249-259.

Isern-Fontanet J., Turiel A., García-Ladona E., Font J. 2007. Microcanonical multifractal formalism: application to the estimation of ocean surface velocities. J. Geophys. Res. 112, C05024.

McDowell S., Rossby H.T. 1978. Mediterranean water: an intense mesoscale eddy off the Bahamas. Science 202 (4372): 1085-1087. PMid:17777959

Panteleev G., Maximenko N., Deyoung B., Reiss C., Yamagata T. 2000. Variational interpolation of circulation with nonlinear, advective smoothing. J. Atmos. Ocean. Tech. 19: 1442-1450.<1442:VIOCWN>2.0.CO;2

Richardson P., Tychensky A. 1998. Meddy trajectories in the Canary Basin measured during the SEMAPHORE experiment, 1993-1995. J. Geophys.Res. 103, C11: 25029-25045.

Serra N., Ambar I., Boutov D. 2010. Surface expression of Mediterranean water dipoles and their contribution to the shelf/slope - open ocean exchange. Ocean Sci. 6: 191-209.

Shapiro G., Meschanov S. 1991. Distribution and spreading of red sea water and salt lens formation in the Northwest Indian Ocean. Deep Sea Res. Part A. 38: 21-34.

Shapiro G., Meschanov S., Emelianov M., 1995. Mediterranean lens "Irving" after its collision with seamounts. Oceanol. Acta 183: 309-318.

Stark J.D., Donlon C.J., Martin M.J., McCulloch M.E. 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Proc. Conf. Oceans '07 IEEE Aberdeen.

Stammer D., Hirinchensen H.H., Käse R.H. 1991. Can meddies be detected by satellite altimetry? J. Geophys. Res. 21: 879-892.

Schlitzer R. 2008. Ocean Data View,

Turiel A., Isern-Fontanet J., García-Ladona E., Font J. 2005. Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys. Rev. Lett. 95: 104502. PMid:16196934

Turiel A., Solé J., Nieves V., Ballabrera-Poy J., García-Ladona E. 2008a. Tracking oceanic currents by singularity analysis of micro-wave sea surface temperature images, Remote Sens. Environ. 112: 2246-2260.

Turiel A., Yahia H., Pérez-Vicente C. 2008b. Microcanonical multifractal formalism: a geometrical approach to multifractal systems. Part I: Singularity analysis. J. Phys. A 41: 015501.

Yan X.-H., Jo Y., Liu W., He M.-X. 2006. A new study of the Mediterranean outflow, air-sea interactions, and Meddies using multisensor data. J. Phys. Oceanogr. 36: 691-710.

Zatsepin A., Didkovskii V., Semenov A. 1998. Self-oscillatory mechanism of periodical eddy structure formation from a stationary local source on the sloping bottom in a rotating fluid, Oceanol. Acad. Sci. USSR. 3: 47-55.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support