Scientia Marina, Vol 76, No S1 (2012)

Using the Regional Ocean Modelling System (ROMS) to improve the sea surface temperature predictions of the MERCATOR Ocean System

Pedro Costa
MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia, Spain

Breogán Gómez
MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia, Spain

Anabela Venâncio
MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia, Spain

Eva Pérez
MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia, Spain

Vicente Pérez-Muñuzuri
MeteoGalicia, Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia, Spain


Global models are generally capable of reproducing the observed trends in the globally averaged sea surface temperature (SST). However, the global models do not perform as well on regional scales. Here, we present an ocean forecast system based on the Regional Ocean Modelling System (ROMS), the boundary conditions come from the MERCATOR ocean system for the North Atlantic (1/6° horizontal resolution). The system covers the region of the northwestern Iberian Peninsula with a horizontal resolution of 1/36°, forced with the Weather Research and Forecasting Model (WRF) and the Soil Water Assessment Tool (SWAT). The ocean model results from the regional ocean model are validated using real-time SST and observations from the MeteoGalicia, INTECMAR and Puertos Del Estado real-time observational networks. The validation results reveal that over a one-year period the mean absolute error of the SST is less than 1°C, and several sources of measured data reveal that the errors decrease near the coast. This improvement is related to the inclusion of local forcing not present in the boundary condition model.


ROMS; WRF; MERCATOR; ocean modelling; Galician coast; sea surface temperature; freshwater

Full Text:



Alvarez-Salgado X.A., Rosón G., Pérez F.F., Pazos Y. 1996. Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Mar. Ecol. Prog. Ser. 135: 259-273.

Alvarez-Salgado X.A., Figueiras F.G., Pérez F.F., Groom S., Nogueira E., Borges A.V., Chou L., Castro G.C., Moncoiffé G., Rios A.F., Miller A.E.J., Frankignoulle M., Savidge G., Wollast R. 2003. The Portugal coast counter current off NW Spain: new insights on its biogeochemical variability. Prog. Oceanogr. 56: 281-321.

Arnold J.G., Srinivasan P., Muttiah R.S, Williams J.R. 1998. Large area hydrologic modeling and assessment. Part I. Model development. J. Am. Water Resour. As. 34: 73-89.

Balseiro C.F., Carracedo P., Gómez B., Leitão P.C., Montero P., Naranjo L., Penabad E., Pérez-Muñuzuri V. 2003. Tracking the Prestige oil spill: an operational experience in simulation at MeteoGalicia. Weather 58: 452-458.

Blayo E., Debreu L. 2005. Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Model. 9: 234-252.

Bode A., Varela M. 1998. Primary production and phytoplankton in three Galicia Rias Altas (NW Spain): seasonal and spatial variability. Sci. Mar. 62: 319-330.

Canuto V.M., Howard A., Cheng Y., Dubovikov M.S. 2001. Ocean turbulence Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31: 1413-1426.<1413:OTPIOP>2.0.CO;2

Carracedo P., Balseiro C.F., Penabad E., Gómez B., Pérez-Muñuzuri V. 2005. One year validation of wave forecasting at Galician coast. J. Atmos. Ocean Sci. 10: 407-419.

Chapman D.C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15: 1060-1075.<1060:NTOCSO>2.0.CO;2

Ekman V.W. 1905. On the influence of the earth’s rotation on ocean currents. Arkiv Matematik. Astron. Fysik 11: 52 pp.

Egbert G.D., Erofeeva S.V. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean Technol. 19: 183-204.<0183:EIMOBO>2.0.CO;2

Fairall C.W., Bradley E.F, Rogers D.P., Edson J.B., Young G.S. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere Coupled Ocean Atmosphere Response Experiment. J. Geophys. Res. 101: 3747-3764.

Flather, R.A. 1976. A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liège 6: 141-164.

Haidvogel, D.B., Beckman A. 1999. Numerical Ocean Circulation Modeling. Imperial College Press, 318 pp.

Haynes R., Barton E.D., Pilling I. 1993. Development persistence and variability of upwelling filaments off the Atlantic Coast of the Iberian Peninsula. J. Geophys. Res. 98: 22681-22692.

Mason E., Colas F., Molemaker J., Shchepetkin A.F., Troupin C., McWilliams J.C., Sangrà P. 2011. Seasonal variability of the Canary Current: a numerical study. J. Geophys. Res. 116: C06001.

Mellor G.L., Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20: 851-875.

Oliveira P.B., Nolasco R., Dubert J., Moita T., Peliz A.J. 2009. Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont. Shelf Res. 29: 759-774.

Peliz A., Rosa T., Santos A.M.P., Pissara J. 2002. Jets, eddies, and counterflows in the western Iberian upwelling system. J. Mar. Syst. 35: 61-77.

Shapiro R. 1970. Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys. 8: 359-387.

Shchepetkin A.F., McWilliams J.C. 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model. Ocean Model. 9: 347-404.

Song Y., Haidvogel D.B. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys. 115: 228-244.

Umlauf L., Burchard H. 2003. A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 61: 235-265.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support