Scientia Marina, Vol 76, No S1 (2012)

New technologies for marine research: five years of glider activities at IMEDEA

Simón Ruiz
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Bartolomé Garau
SOCIB , Spain

Miguel Martínez-Ledesma
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Benjamín Casas
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Ananda Pascual
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Guillermo Vizoso
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Jérôme Bouffard
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Emma Heslop
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) , Spain

Alberto Alvarez
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) - NURC La Spezia , Italy

Pierre Testor
LOCEAN , France

Joaquín Tintoré
IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) - SOCIB , Spain


This paper summarizes the glider activities carried out in the last 5 years by the IMEDEA Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS). TMOOS has been operating gliders in the Western Mediterranean Sea since 2006 and has set-up electronic and maintenance laboratories in order to establish a key glider port in the area. Twenty-two glider missions have been performed to date and over 17000 hydrographic and biogeochemical profiles collected. TMOOS is using gliders for operational, technological and scientific objectives. Studies of path planning analysis and adaptive sampling for gliders in combination with other platforms have been undertaken and new methodologies have been developed to process data from gliders. Thus far, IMEDEA gliders have contributed to the better understanding of mesoscale processes in the upper ocean, including the coupling between the physical and biogeochemical process of the marine ecosystem and, in combination with remote sensing observations, high-resolution glider data has enabled advances in new methodologies to improve coastal altimetry. Gliders have also proved to be important platforms for the development of operational oceanography tools and useful vehicles on which to test and implement new sensors for ocean monitoring.


Autonomous underwater vehicles; ocean observing system; upper ocean mesoscale processes; Balearic Sea

Full Text:



Allen J.T., Smeed D. A., Tintoré J., Ruiz S. 2001. Mesoscale subduction at the Almeria-Oran front. Part 1: Ageosotrophic flow, J. Marine Syst., 30: 263-285.

Alvarez A., Caiti A. 2001. A genetic algorithm for autonomous underwater vehicle route planning in ocean environments with complex space-time variability. In: Proceedings of the IFAC Control Applications of Marine Systems (CAMS 2001).

Alvarez A., Caiti A. 2002. Interactions of autonomous underwater vehicles with variable scale ocean structures. In: Proceedings of the IFAC World Conference Systems.

Alvarez A., Caiti, Onken R. 2004. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J. Oceanic Eng., 29: 418-429.

Alvarez A., Garau B., Caiti A. 2007. Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean, IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14. PMid:17573840

Bouffard J., Pascual A., Ruiz S., Faugere Y., Tintoré J. 2010. Coastal and mesoscale dynamics characterization using altimetry and gliders: A case study in the Balearic Sea, J. Geophys. Res., 115: C10029.

Bourrin F, Taillandier V., Prieur L., Claustre H., Poteau A., d'Ortenzio F. 2009. Seasonal variability of physical and biogeochemical coupling at submesoscale across the Ligurian Current, NW Mediterranean, 4th EGO meeting, 16-20 November, Cyprus. PMid:19564059 PMCid:2888951

Castelao R., Glenn S., Schofield O., Chant R., Wilkin J., Kohut J. 2008a. Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider observations. Geophys. Res. Lett. 35: L03617.

Castelao R., Schofield O., Glenn S., Chant R., Kohut J. 2008b. Cross-shelf transport of freshwater on the New Jersey shelf, J. Geophys. Res., 113: C07017.

Davis R., Ohman M.D., Rudnick D.L., Sherman J., Hodges B. 2008: Glider surveillance of physics and biology in the southern California Current System, Limnol. Oceanogr. 53: 2151-12168.

Dobricic S., Pinardi N., Testor P., Send U. 2009. Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean). Dyn. Atmos. Oceans. 50: 78-92.

Eriksen C., Osse T. J., Light R. D., Wen T., Lehman T.W., Sabin P.L., Ballard J.W., Chiodi A.M. 2001. Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26: 424-436.

Eriksen, C. 2010. The autonomous revolution. Transforming ocean observation with mobile platfoms, (Sverdrup Lecture), AGU Fall Meeting, 13-17, San Francisco.Garau B., Alvarez A., Oliver G. 2005. Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 195-199.

Garau B., Bonet M., Alvarez A., Ruiz S., Pascual A. 2009. Path Planning for Autonomous Underwater Vehicles in Realistic Oceanic Current Fields: Application to Gliders in the Western Mediterranean Sea, J. Marit. Res. VI: 5-22.

Garau B., Ruiz S., Zang G.W., Heslop E., Kerfoot J., Pascual A., Tintoré J. 2011. Thermal lag correction on Slocum CTD glider data, J. Atmos. Ocean. Tech. 28: 1065-1074.

Gomis D., Ruiz S., Pedder M. A. 2001. Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data, Deep-Sea Res. I, 48: 269-295.

Gourdeau L., Kessler W.S., Davis R.E., Sherman J., Maes C., Kestenare E. 2008. Zonal Jets Entering the Coral Sea, J. Phys. Oceanogr. 38: 715-725.

Hátún H., Eriksen C.C., Rhines P.B. 2007. Buoyant Eddies Entering the Labrador Sea Observed with Gliders and Altimetry. J. Phys. Oceanogr. 37: 2838-2854.

Heslop E., Ruiz S., Garau B., Allen J., Tintoré J., Lopez-Jurado J.L., Schroeder K. 2011. Variability in upper layer transports in the Balearic Sea, using new data from glider missions. 5th Everyone's Gliding Observatories Workshop, 14-18 March, Gran Canaria, Spain.

Hodges B.A., Fratantoni D.M. 2009. A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders, J. Geophys. Res., 114: C10020.

Martin J.P., Lee C.M., Eriksen C., Ladd C., Kachel N.B. 2009. Glider observations of kinematics in a Gulf of Alaska eddy, J. Geophys. Res. 114: C12021. Merckelbach L., Smeed D., Griffiths G. 2010. Vertical Water Velocities from Underwater Gliders. J. Atmos. Ocean. Tech. 27: 547-563.

Niewiadomska K., Claustre H., Prieur L., D'Ortenzio F. 2008. Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider, Limnol. Oceanogr. 53: 2210-2225.

Pascual A., Buongiorno Nardelli B., Larnicol G., Emelianov M., Gomis D. 2002. A case of an intense anticyclonic eddy in the Balearic Sea (western Mediterranean), J. Geophys. Res. 107: 3183.

Pascual A., Ruiz S., Tintoré J. 2010. A multi-platform experiment for understanding coastal processes, Sea Technol. July issue: 32-36.

Pinot J.M., López-Jurado J.L., Riera M., 2002. The CANALES experiment (1996–98). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55: 335-370.

Perry, M.J., Sackmann B.S., Eriksen C.C., Lee C.M. 2008. Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast. Limnol. Oceanogr. 53: 2169-2179.

Rio M.-H., Poulain P.M., Pascual A., Mauri E., Larnicol G., Santoleri R. 2007. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 65: 484-508.

Rudnick D., Davis R., Eriksen C., Fratantoni D., Perry M. J. 2004. Underwater Glider for Ocean Research, Mar. Technol. Soc. J. 38: 48-59.

Ruiz S., Garau B., Martínez-Ledesma M. 2009a. Monitoring the Eastern Alboran sea using high resolution glider data, Sea Technol. March issue: 29-32.

Ruiz S., Pascual A., Garau B., Faugere Y., Alvarez A., Tintoré J. 2009b. Mesoscale dynamics of the Balearic front integrating glider, ship and satellite data. J. Mar. Syst. 78: S3-S16.

Ruiz S., Pascual A., Garau B., Pujol I., Tintoré J. 2009c. Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 36: L14607.

Sherman J., Davis R. E., Owens W. B., Valdes J. 2001. The autonomous underwater glider "Spray". IEEE J. Oceanic Eng. 26: 437-446.

Shulman I., Rowley C., Anderson S., DeRada S., Kindle J., Martin P., Doyle J., Cummings J., Ramp S., Chavez F., Fratantoni D., Davis R. 2009. Impact of glider data assimilation on the Monterey Bay model. Deep-Sea Res. II 56: 188-198.

Siegel E. 2009. Capabilities for gliders, Marine Technology Reporter, October Issue, 28-34.Stommel H. 1989. The SLOCUM mission. Oceanography April: 22-24.

Testor P., Meyers G., Pattiaratchi C., Bachmayer R., Hayes D., Pouliquen S., Petit de la Villeon L., Carval T., Ganachaud A., Gourdeau L., Mortier L., Claustre H., Taillandier V., Lherminier P., Terre T., Visbeck M., Krahman G., Karstensen J., Alvarez A., Rixen M., Poulain P.M., Osterhus S., Tintoré J., Ruiz S., Garau B., Smeed D., Griffiths G., Merckelbach L., Sherwin T., Schmid C., Barth J.A., Schofield O., Glenn S., Kohut J., Perry M.J., Eriksen C., Send U., Davis R., Rudnick D., Sherman J., Jones C., Webb D., Lee C., Owens B., Fratantoni D. 2009. Gliders as a component of future observing systems, In Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Annex), Venice, Italy, 21-25 September 2009, Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306.Tintoré J., Gomis D., Alonso S., Parrilla G. 1991. Mesoscale dynamics and vertical motion in the Alboran Sea, J. Phys. Oceanogr. 21: 811-823.<0811:MDAVMI>2.0.CO;2

Tintoré J., Alvarez A., Casas B., Garau B., Vizoso G., Testor P., Send U., Lherminier P., Terre T., Karstensen J., Krahmann G. 2007. MERSEA glider operation in the Mediterranean Sea, 4th MERSEA annual meeting, April 23-24, Rome, Italy.Tintoré J., Alvarez A., Orfila A., Balle S., Pascual A., Ruiz S., Vizoso G., Pitarch S. 2009. Department of Marine Technologies, Operational Oceanography and Sustainability: Strategic Plan 2010-2013, ISBN: 978-84-692-39-384.Todd R., Rudnick D., Davis R., Ohman M. 2011. Underwater gliders reveal rapid arrival of El Niño effects off California's coast, Geophys. Res. Lett. 38: L03609.

Tonani M., Pinardi N., Dobricic S., Pujol I., Fratianni C. 2008. A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci. 4: 1-14.

Webb D. C., Simonetti P. J., Jones C. P. 2001. SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng. 26: 447-452.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support