Scientia Marina, Vol 76, No 3 (2012)

Effects of algal diets and starvation on growth, survival and fatty acid composition of Solen marginatus (Bivalvia: Solenidae) larvae

Fiz Da Costa
Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia , Spain

Susana Nóvoa
Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia , Spain

Justa Ojea
Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia , Spain

Dorotea Martínez-Patiño
Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia , Spain


The aim of this study was to investigate whether it is necessary to feed Solen marginatus (Pennánt, 1777) larvae externally and the evolution of fatty acids in the neutral and polar lipids during larval development in starved larvae and larvae fed on two different microalgal diets. Larvae were subjected to three different treatments: 1. 10 equivalent cells (Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans) plus 20 equivalent cells of Tetraselmis suecica; 2. 80 equivalent cells of I. galbana and 3. starvation during eight days, and then individuals were re-fed on diet 1. The best results for growth were observed in larvae fed on diet 1. Starved larvae reached the best survival rate at day 8 (66%). However, three days after re-feeding all larvae died, suggesting that the “point of no return” was exceeded. In spite of the large size of S. marginatus eggs and the great amount of stored reserves, the larvae need to feed on microalgae to undergo metamorphosis. Non-methyle-interrupted dienoic fatty acids and their precursors 16:1n-7 and 18:1n-9 are of great importance in starved larvae. Saturated fatty acids, especially 16:0, fuel larval development. A certain degree of bioconversion of 18:2n-6 to 20:4n-6 was observed in S. marginatus larvae.


Solen marginatus; razor clam; larvae; diets; starvation

Full Text:



Ben Kheder R., Quéré C., Moal J., Robert R. 2010. Effect of nutrition on Crassostrea gigas larval development and the evolution of physiological indices. Part B: Effects of temporary food deprivation. Aquaculture 308: 174-182.

Caers M., Coutteau P., Sorgeloos P. 1999. Dietary impact of algal and artificial diets, fed at different feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat. Aquaculture 170: 307-322.

Chu F.-L.E., Greaves J. 1991. Metabolism of palmitic, linoleic, and linolenic acids in adult oysters, Crassostrea virginica. Mar. Biol. 110: 229-236.

da Costa F., Martinez-Patiño D. 2009. Culture potential of the razor clam Solen marginatus (Pennant, 1777). Aquaculture 288: 57-64.

da Costa F., Nóvoa S., Ojea J., Martínez-Patiño D. 2011. Changes in biochemical and fatty acid composition of the razor clam Solen marginatus (Solenidae: Bivalvia) during larval development. Mar. Biol. 158: 1829-1840.

Delaunay F., Marty Y., Moal J., Samain J.F. 1993. The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173: 163-179.

De Moreno J.E.A., De Moreno V.J., Brenner R.R. 1976. Lipid metabolism of the yellow clam, Mesodesma mactroides: II: polyunsaturated fatty acid metabolism. Lipids 11: 561-566. PMid :948252

Farías A., Bell J.G., Uriarte I., Sargent J.R. 2003. Polyunsaturated fatty acids in total lipid and phospholipids of chilean scallop Argopecten purpuratus (L.) larvae: effects of diet and temperature. Aquaculture 228: 289-305.

Helm M.M., Laing I. 1987. Preliminary observations on the nutritional value of “Tahiti Isochrysis” to bivalve larvae. Aquaculture 62: 281-288.

Helm M.M., Bourne N., Lovatelli A. (Comp./Ed.) (2004). Hatchery culture of bivalves. A practical manual. FAO Fisheries Technical Paper. No. 471. Rome, 177 pp.

Hendriks I.E., van Duren L.A., Herman P.M.J. 2003. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. J. Exp. Mar. Biol. Ecol. 296: 199-213.

Howard R.W., Stanley D.W. 1999. The tie that binds: Eicosanoids in invertebrate biology. Ann. Entomol. Soc. Am. 92: 880-890.

Labarta U., Fernandez-Reiriz M.J., Perez-Camacho A. 1999. Larvae of Ostrea edulis (L.) during starvation: growth, energy and biochemical substrates. Hydrobiologia 405: 125-131.

Laing I., Child A.R., Janke A. 1990. Nutritional value of dried algae diets for larvae of Manila clam (Tapes philippinarum). J. Mar. Biol. Ass. U. K. 70: 1-12.

Langdon C.J., Waldock M.J. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Ass. U. K. 61: 431-448.

Marshall R., McKinley S., Pearce C.M. 2010. Effects of nutrition on larval growth and survival in bivalves. Rev. Aquacult. 2: 33-55.

Marty Y., Delaunay F., Moal J., Samain J.F. 1992. Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J. Exp. Mar. Biol. Ecol. 163: 221-234.

Metcalfe L.D., Schmitz A.A. 1961. The rapid preparation of fatty acid esters for gas chromatography analysis. Anal. Chem. 33: 363-364.

Ockelmann K.W. 1965. Developmental types in marine bivalves and their distribution along the Atlantic coasts of Europe. Proccedings of the First European Malacological Congress. London, pp. 25-53.

Palacios E., Racotta I.S., Kraffe E., Marty Y., Moal J., Samain J.F. 2005. Lipid composition of the giant lion’s-paw scallop (Nodipecten subnodosus) in relation to gametogenesis: I. Fatty acids. Aquaculture 250: 270-282.

Paradis M., Ackman R. 1977. Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 12: 170-176. PMid :846300

Pernet F., Bricelj V.M., Parrish C.C. 2005. Effect of varying dietary levels of omega 6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 327: 115-133.

Pernet F., Tremblay R. 2004. Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 310: 73-86.

Sokal R.R., Rohlf F.J. 1995. Biometry. The principleas and practice of statistics in biological research. Third edition edn. Freeman, New York, 358 pp.

Soudant P., Marty Y., Moal J., Samain J.F. 1995. Separation of major polar lipids in Pecten maximus by high-performance liquid chromatography and subsequent determination of their fatty acids using gas chromatography. J. Chromatogr. B-Biomed. Appl. 673: 15-26.

Thompson P.A., Harrison P.J. 1992. Effects of monospecific algal diets of varying biochemical composition on the growth and survival of Pacific oyster (Crassostrea gigas) larvae. Mar. Biol. 113: 645-654.

Waldock M.J., Holland, D.L. 1984. Fatty acid metabolism in young oysters, Crassostrea gigas: polyunsaturated fatty acids. Lipids 19: 332-336.

Webb K.I., Chu F.E. 1982. Phytoplankton as a food source for bivalve larvae. In: Pruder G.D., Langdon C., Conklin D. (eds.), Proceedings of the second international conference on aquaculture nutrition; biochemical and physiological approaches to shellfish nutrition. Louisiana State University, Baton Rouge, pp. 272-290.

Whyte J.N.C., Bourne N., Ginther N.G., Hodgson C.A. 1992. Compositional changes in the larva to juvenile development of the scallop Crassadoma gigantea (Gray). J. Exp. Mar. Biol. Ecol. 163: 13-29.

Yan X., Zhang Y., Huo Z., Yang F., Zhang G. 2009. Effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum. Acta Ecol. Sinica 29: 327-334.

Zhukova N.V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp. Biochem. Phys. B. 100: 801-804.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support