Scientia Marina, Vol 76, No 2 (2012)

Geographic differences in the carapace shape of the crab Cyrtograpsus affinis (Decapoda: Varunidae) and its taxonomic implications


https://doi.org/10.3989/scimar.03391.16A

Aníbal H. Lezcano
Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas , Argentina

Rolando González-José
Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas , Argentina

Eduardo D. Spivak
Universidad Nacional de Mar del Plata , Argentina

Fernando G. Dellatorre
Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de la Patagonia San Juan Bosco , Argentina

Abstract


Cyrtograpsus genus was traditionally considered to be composed of three species: C. angulatus, C. altimanus and C. affinis. However, recent studies have found solid evidence suggesting that C. affinis and C. altimanus belong to a single species and hypothesize that the morphological differences which caused this misclassification could be related to different ecophenotypes or life stages. Here we report a geometric morphometrics study on the carapace shape of Cyrtograpsus specimens from the Río de la Plata estuary (36°S) and the Nuevo Gulf (42.75°S), testing for shape differences between different sizes (allometry) in the two environments. We found that previous morphological descriptions of the two species were associated with different sizes of a continuous, statistically significant allometric shape variation, concluding that C. affinis is a junior synonym of C. altimanus. We also found significant differences in the carapace shape between estuarine and marine environments, suggesting an effect of the environmental variables on carapace shape and a potential adaptive value of this trait.

Keywords


Cyrtograpsus altimanus; allometry; geometric morphometrics; Río de la Plata estuary; Nuevo Gulf; local adaptations; contrasting habitats

Full Text:


PDF

References


Adams D. 1999. Methods for shape analysis of landmark data from articulated structures. Evol. Ecol. Res. 1: 959-970.

Aldrich J. 1993. The identification of biota through the analysis of their two-dimensional shapes, and the recognition of local forms in Carcinus maenas L. In: Aldrich J.C. (ed.), Quantified phenotypic responses in morphology and physiology. Ashford: JAPAGA, pp. 55-64

Anderson M. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26: 32-46.

Anderson M., Ford R., Feary D., Honeywill C. 2004. Quantitative measures of sedimentation in an estuarine system and its relationship with intertidal soft-sediment infauna. Mar. Ecol. Prog. Ser. 272: 33-48. http://dx.doi.org/10.3354/meps272033

Balech E. 1954. División zoogeográfica del litoral sudamericano. Rev. Biol. Mar. 4(1-2-3): 184-195.

Barría E., Sepúlveda R., Jara C. 2011. Morphologic variation in Aegla (Decapoda: Reptantia: Aeglidae) from central-southern Chile: Interspecific differences, sexual dimorphism, and spatial segregation. J. Crustac. Biol. 31(2): 231-239. http://dx.doi.org/10.1651/10-3324.1

Bookstein F. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.

Bookstein F. 1996. Combining the tools of geometric morphometrics. In: Marcus L.F., Corti M., Loy A., Naylor G.J., Slice D.E. (eds.), Advances in Morphometrics. Plenum Press, pp. 131-151

Boschi E. 1964. Los crustáceos decápodos Brachyura del litoral bonaerense (R. Argentina). Bol. Inst. Biol. Mar. Mar de Plata 6: 1-100.

Boschi E. 2000. Las especies de crustáceos decápodos y su distribución en las provincias zoogeográficas marinas americanas. Rev. Invest. Desarr. Pesq. 13: 1-136

Boschi E., Fischbach C., Dorio M. 1992. Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marit. 10(A): 7-94.

Botello A., Alvarez F. 2006. Allometric growth in Creaseria morleyi (Creaser, 1936) (Decapoda: Palaemonidae), from the Yucatan peninsula, Mexico. Carribean J. Sci. 42(2): 171-179.

Brian J., Fernandes T., Ladle R., Todd P. 2006. Patterns of morphological and genetic variability in UK populations of the shore crab, Carcinus maenas Linnaeus, 1758 (Crustacea: Decapoda: Brachyura). J. Exp. Mar. Biol. Ecol. 329: 47-54. http://dx.doi.org/10.1016/j.jembe.2005.08.002

Cadrin S. 2000. Advances in morphometric identification of fishery stocks. Rev. Fish. Biol. Fish. 10: 91-112. http://dx.doi.org/10.1023/A:1008939104413

Cadrin S., Friedland K., Waldman J. 2005. Stock Identification Methods: applications in fishery science. Elsevier Academic Press, Amsterdam.

Costa T., Soares-Gomes A. 2008. Relative growth of the fiddler crab Uca rapax (Smith) (Crustacea: Decapoda: Ocypodidae) in a tropical lagoon (Itaipu), Southeast Brazil. Pan-Am. J. Aquat. Sci. 3(2): 94-100.

Chang H., Hsu C. 2004. Statistical comparisons of some external morphometrical aspects of the swimming crab Protunus sanguinolentus (Herbst) populations inhabiting the Keelung shelf and Taiwan bank. TAO 15: 179-197.

Cheverud J. 1982. Relationships among ontogenetic, static, and evolutionary allometry. Am. J. Phys. Anthropol. 59: 139-149. http://dx.doi.org/10.1002/ajpa.1330590204 PMid :7149015

Daleo P., Luppi T., Mendez Casariego A., Escapa M., Ribeiro P., Silva P., Iribarne O. 2009. The effect of size and cheliped autotomy on sexual competition between males of the mud crab Cyrtograpsus angulatus Dana. Mar. Biol. 156(3): 269-275. http://dx.doi.org/10.1007/s00227-008-1081-1

Drake A., Klingenberg C. 2008. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proc. R. Soc., B. 275: 71-76. http://dx.doi.org/10.1098/rspb.2007.1169 PMid :17956847    PMCid:2562403

Dryden I., Mardia K. 1998. Statistical Shape Analysis. Wiley, New York.

Framiñan M., Brown O. 1996. Study of the Río de la Plata turbidity front. Part I: spatial and temporal distribution. Cont. Shelf. Res. 16: 1259-1282. http://dx.doi.org/10.1016/0278-4343(95)00071-2

Garth J. 1957. Reports of the Lund University Chile Expedition 1948-49. 29. The Crustacea Brachyura of Chile. Lund. Univ. Årsskr. 53(7): 3-127.

Giberto D., Bremec C., Acha E., Mianzan H. 2004. Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Río de la Plata estuary and adjacent shelf waters. Est. Coast. Shelf. Sci. 61: 1-13. http://dx.doi.org/10.1016/j.ecss.2004.03.015

Giri F., Loy A. 2008. Size and shape variation of two freshwater crabs in Argentinean Patagonia: The influence of sexual dimorphism, habitat, and species interactions. J. Crustac. Biol. 28(1): 37-45. http://dx.doi.org/10.1651/07-2824R.1

Good P. 2000. Permutation tests: a practical guide to resampling methods for testing hypotheses. Springer, New York.

Guerrero R., Acha E., Framiñan M., Lasta C. 1997. Physical oceanography of the Río de la Plata estuary, Argentina. Cont. Shelf. Res. 17: 727-742. http://dx.doi.org/10.1016/S0278-4343(96)00061-1

Guinot D. 1984. Le genre Leurocyclus Rathbun (Crustacea, Decapoda, Brachyura). Bull. Mus. Nat. Hist. Nat. 1(A): 211-247.

Gunz P., Mitteroecker P., Bookstein F. 2005. Semilandmarks in three dimensions. In: Slice D.E. (ed.), Modern Morphometrics in Physical Anthropology. Kluwer Academic, pp. 73-98 http://dx.doi.org/10.1007/0-387-27614-9_3

Haye P., Salinas P., Acuña E., Poulin E. 2010. Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evol. Devel. 12(6): 628-634. http://dx.doi.org/10.1111/j.1525-142X.2010.00447.x

Hines A. 1989. Geographic variation in size at maturity in brachyuran crabs. Bull. Mar. Sci. 45(2): 356-368.

Hopkins M., Thurman C. 2010. The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biol. J. Linn. Soc. 100: 248-270. http://dx.doi.org/10.1111/j.1095-8312.2010.01402.x

Hopkins M., Webster M. 2009. Ontogeny and geographic variation of a new species of the corynexochine trilobite zacanthopsis (Dyeran, Cambrian). J. Paleontol. 83(4): 524-547. http://dx.doi.org/10.1666/08-102R.1

Huber M. 1985. Allometric growth of the carapace in Trapezia (Brachyura, Xanthidae). J. Crustac. Biol. 5(1): 79-83. http://dx.doi.org/10.2307/1548222

Huespe A., Gómez Simes E., Pastor de Ward C. 2008. Gastic mill morphology in the genus Cyrtograpsus (Crustacea: Decapoda: Grapsoidea: Varunidae). J. Mar. Biol. Assoc. UK 88(2): 311-319. http://dx.doi.org/10.1017/S0025315408000520

Huxley J. 1932. Problems of Relative Growth. The Dial Press, New York.

Kendall D. 1981. The statistics of shape. In: Barnett V. (ed.), Interpreting multivariate data. Wiley and Sons, pp. 75-80

Kendall D. 1984. Shape-manifolds, procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16: 81-121. http://dx.doi.org/10.1112/blms/16.2.81

Kent J. 1994. The complex Bingham distribution and shape analysis. J. R. Stat. Soc. 56(B): 285-299.

Kingsolver J., Pfenning D., Servedio M. 2002. Migration, local adaptation and the evolution of plasticity. Trends Ecol. Evol. 17: 540–541. http://dx.doi.org/10.1016/S0169-5347(02)02641-1

Klingenberg C. 1996. Multivariate allometry. In: Marcus L.F. (ed.), Advances in Morphometrics. Plenum Press, pp. 23-49

Klingenberg C. 2008. MorphoJ. Faculty of Life Sciences, University of Manchester.

Klingenberg C. 2010. Evolution and development of shape: integrating quantitative approaches. Nature Rev. Gen. 11: 623-635. PMid :20697423

Klingenberg C. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Res. 11: 353-357. http://dx.doi.org/10.1111/j.1755-0998.2010.02924.x PMid :21429143

Klingenberg C., Leamy L., Routman E., Cheverud J. 2001. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157: 785-802. PMid :11156997    PMCid:1461535

Levin L. 2006. Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology. 46(3): 282-297. http://dx.doi.org/10.1093/icb/icj024 PMid :21672742

Mallet J. 2005. Speciation in the 21st century. Heredity 95: 105-109. http://dx.doi.org/10.1038/sj.hdy.6800686

Mantelatto F., Robles R., Felder D. 2007. Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae). Zool. J. Linn. Soc. 150: 211-220. http://dx.doi.org/10.1111/j.1096-3642.2007.00298.x

Martinetto P., Valiñas M., Palomo G., Iribarne O. 2007. Negative interactions between two SW Atlantic intertidal crabs in soft-bottom habitats. Mar. Biol. 151: 1479-1490. http://dx.doi.org/10.1007/s00227-006-0585-9

Mashiko K. 2000. Insights into the mechanism of speciation in gammarid crustaceans of Lake Baikal using a population-genetic approach. Adv. Ecol. Res. 31: 221-235. http://dx.doi.org/10.1016/S0065-2504(00)31014-5

Méndez Casariego A., Alberti J., Luppi T., Iribarne O. 2008. Stage-dependent interactions between intertidal crabs: from facilitation to predation. J. Mar. Biol. Ass. UK 89: 781-788. http://dx.doi.org/10.1017/S0025315408002324

Mouzo F., Garza M., Izquierdo J., Zibecchi R. 1978. Rasgos de la geología submarina del Golfo Nuevo (Chubut). Acta Oceanogr. Argentina 2: 69-91.

Orensanz J., Ernst B., Armstrong D. 2007. Variation of female size and stage at maturity in snow crab (Chionoecetes opilio) (Brachyura: Majidae) from the eastern Bering sea. J. Crustac. Biol. 27(4): 576-591. http://dx.doi.org/10.1651/S-2790.1

Orensanz J., Parma A., Iribarne O. 1991. Population dynamics and management of natural stocks. In: Shumway S.E. (ed.), Scallops: Biology, Ecology and Aquaculture. Elsevier, pp. 625-714

Osawa M., McLaughlin P. 2010. Annotated checklist of Anomuran Decapod Crustacean of the world (exclusive of the Kiwaoidea and families chirostylidae and galatheidae). Part II- Porcellanidae. Raffles Bull. Zool. 23: 109-129.

Otani T., Takahashi T. 1996. Cheliped transformation in the swimming pea crab Tritodynamia horvathi Nobili. Crustac. Res. 25: 137-141.

Parker G., Paterlini M., Violante M. 1997. El fondo marino. In: Boschi E.E. (ed.), El Mar Argentino y sus recursos pesqueros. Tomo 1. Instituto Nacional de Investigación y Desarrollo Pesquero, pp. 65-88

Perez S., Bernal V., Gonzalez P. 2006. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J. Anat. 208: 769-784. http://dx.doi.org/10.1111/j.1469-7580.2006.00576.x PMid :16761977    PMCid:2100233

Peters R. 1983. The Ecological Implications of Body size. Cambridge University Press, Cambridge.

Rathbun M.J. 1918. The Grapsoid crabs of America. Bull. U.S. Nat. Mus. 97: 1-461.

Rincón P. 2000. Big fish, small fish: still the same species. Lack of morphometric evidence of the existence of two sturgeon species in the Guadalquivir river. Mar. Biol. 136: 715-723. http://dx.doi.org/10.1007/s002270050731

Rivas A., Ripa P. 1989. Variación estacional de la estructura termohalina del golfo Nuevo, Argentina. Geofis. Int. 28(1): 3-23.

Rohlf F. 1993. Relative warp analysis and an example application to mosquito wings. In: Marcus L.F., Bello E., García-Valdecasas A. (eds.), Contribution to Morphometrics. CSIC, pp. 131-159

Rohlf F. 1996. Morphometric spaces, shape components and the effects of linear transformations. In: Marcus L.F., Corti M., Loy A., Naylor G.J.P., Slice D.E. (eds.), Advances in morphometrics. Plenum Press, pp. 117-129.

Rohlf F. 1998. TpsSmall, versión 1.15. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classif. 16: 197-223. http://dx.doi.org/10.1007/s003579900054

Rohlf F. 2004a. TpsDig, version 1.39. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F. 2004b. TpsRelw, version 1.35. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F. 2004c. TpsUtil, version 1.26. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F., Bookstein F. 1987. A comment on shearing as a method for “size correction”. Syst. Zool. 36: 356-367. http://dx.doi.org/10.2307/2413400

Rohlf F., Marcus L. 1993. A revolution in morphometrics. Trends Ecol. Evol. 8: 129-132. http://dx.doi.org/10.1016/0169-5347(93)90024-J

Rohlf F., Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40-59. http://dx.doi.org/10.2307/2992207

Rosas A., Bastir M. 2004. Geometric morphometric analysis of allometric variation in mandibular morphology from the hominids of Atapuerca, Sima de los Huesos site. Anat. Rec. 278(A): 551-560.

Rufino M., Abelló P., Yule A. 2006. Geographic and gender shape differences in the carapace of Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. J. Zool. 269: 458-465. http://dx.doi.org/10.1111/j.1469-7998.2006.00086.x

Santana W., Tavares M. 2010. Temnonotus simplex A. Milne-Edwards, 1875, a junior synonym of Temnonotus granulosus A. Milne-Edwards, 1875 (Decapoda: Brachyura: Majidae). Nauplius 18(2): 147-152.

Santos Moreno J., Hortelano Y. 1997. La variación en mamíferos: una revisión de los enfoques metodológicos actuales. Acta Zool. Mexic. 70: 13-34.

Sardà F., Company J., Costa C. 2005. A morphological approach for relating decapod crustacean cephalothorax shape with distribution in the water column. Mar. Biol. 147: 611-618. http://dx.doi.org/10.1007/s00227-005-1576-y

Schubart C., Cuesta J., Diesel R., Felder D. 2000. Molecular phylogeny, taxonomy, and evolution of non-marine lineages within the American Grapsoidea (Crustacea: Brachyura). Mol. Phylogenet. Evol. 15: 179-190. http://dx.doi.org/10.1006/mpev.1999.0754 PMid :10837150

Schubart C., Cuesta J., Felder D. 2002. Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea. J. Crustac. Biol. 22: 28-44. http://dx.doi.org/10.1651/0278-0372(2002)022[0028:GANBFF]2.0.CO;2

Sheets H., Covino K., Panasiewicz J., Morris S. 2006. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front. Zool. 3: 1-12. http://dx.doi.org/10.1186/1742-9994-3-15 PMid :16978414    PMCid:1592095

Silva A., Silva I., Haukins S., Boaventura D., Thompson R. 2010. Cheliped morphological variation of the intertidal crab Eriphia verrucosa across shores of differing exposure to wave action. J. Exp. Mar. Biol. Ecol. 391: 84-91. http://dx.doi.org/10.1016/j.jembe.2010.06.012

Silva P. 2009. Biología reproductiva de tres especies de cangrejos Brachyura a lo largo de un gradiente marino-estuarial. Doctoral thesis, Universidad Nacional de Mar del Plata. 173 pp.

Slice D. 2001. Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Syst. Biol. 50(1): 141-149. http://dx.doi.org/10.1080/10635150119110 PMid :12116591

Sneath P. 1967. Trend-surface analysis of transformation grids. J. Zool. 151: 65-122. http://dx.doi.org/10.1111/j.1469-7998.1967.tb02866.x

Sokal R., Rohlf F. 1995. Biometry; the principles and practice of statistics in biological research. Freeman and Company, New York.

Spivak E. 1997. Cangrejos estuariales del Atlántico sudoccidental (25°–41°S) (Crustacea: Decapoda: Brachyura). Invest. Mar. 25: 105-120.

Spivak E. 1999. Effects of reduced salinity on juvenile growth of two co-occurring congeneric grapsid crabs. Mar. Biol. 134: 249-257. http://dx.doi.org/10.1007/s002270050543

Spivak E., Cuesta J. 2000. Larval development of Cyrtograpsus affinis (Dana) (Decapoda, Brachyura, Varunidae) from Río de la Plata estuary, reared in the laboratory. Sci. Mar. 64: 29-47.

Spivak E., Schubart C. 2003. Species status in question: a morphometrics and molecular comparison of Cyrtograpsus affinis and C. altimanus (Decapoda, Brachyura, Varunidae). J. Crustac. Biol. 23(1): 212-222. http://dx.doi.org/10.1651/0278-0372(2003)023[0212:SSIQAM]2.0.CO;2

Teissier G. 1960. Relative growth. In: Waterman T. (ed.), The Physiology of Crustacea. Academic Press, pp. 537-560

Tracey S., Lyle J., Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77: 138-147. http://dx.doi.org/10.1016/j.fishres.2005.10.013

Webber A., Hunda B. 2007. Quantitatively comparing morphological trends to environment in the fossil records (Cincinnatian Series, Upper Ordovician). Evolution 61(6): 1455-1465. http://dx.doi.org/10.1111/j.1558-5646.2007.00123.x PMid :17542852




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es