Scientia Marina, Vol 76, No 1 (2012)

End-to-end models for marine ecosystems: Are we on the precipice of a significant advance or just putting lipstick on a pig?

Kenneth A. Rose
Department of Oceanography and Coastal Sciences, 2135 Energy, Coast, and Environment Building, Louisiana State University , United States


There has been a rapid rise in the development of end-to-end models for marine ecosystems over the past decade. Some reasons for this rise include need for predicting effects of climate change on biota and dissatisfaction with existing models. While the benefits of a well-implemented end-to-end model are straightforward, there are many challenges. In the short term, my view is that the major role of end-to-end models is to push the modelling community forward, and to identify critical data so that these data can be collected now and thus be available for the next generation of end-to-end models. I think we should emulate physicists and build theoretically-oriented models first, and then collect the data. In the long-term, end-to-end models will increase their skill, data collection will catch up, and end-to-end models will move towards site-specific applications with forecasting and management capabilities. One pathway into the future is individual efforts, over-promise, and repackaging of poorly performing component submodels (“lipstick on a pig”). The other pathway is a community-based collaborative effort, with appropriate caution and thoughtfulness, so that the needed improvements are achieved (“significant advance”). The promise of end-to-end modelling is great. We should act now to avoid missing a great opportunity.


end-to-end; model; climate change; future pathways; community-based; collaborative; interdisciplinary; over-promise; patience; new approaches

Full Text:



Auyang S.Y. 1999. Foundations of complex-system theories in economics, evolutionary biology, and statistical physics. Cambridge University Press, Cambridge, UK.

Clark J.S., Carpenter S., Barber M., Collins S., Dobson A., Foley J., Lodge D., Pascual M., Pielke R., Pizer W., Pringle C., Reid W., Rose K., Sala O., Schlesinger W., Wall D. Wear D. 2001. Ecological forecasts: an emerging imperative. Science 293: 657-660. PMid:11474103

Cury P., Bakun A., Crawford R. J. M., Jarre-Teichmann A., Quinones R.A., Shannon L. J. Verheye H.M. 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in ‘‘wasp-waist’’ ecosystems. ICES J. Mar. Sci. 57: 603-618.

DeAngelis D.L., Mooij W.M. 2005. Individual-based modeling of ecological and evolutionary processes. Annu. Rev. Ecol. Evol. S. 36: 147-168.

Friedrichs M.A.M., Dusenberry J., Anderson L., Armstrong R., Chai F., Christian J., Doney S.C., Dunne J., Fujii M., Hood R., McGillicuddy D., Moore K., Schartau M., Sptiz Y. H., Wiggert J. 2007. Assessment of skill and portability in regional marine biogeochemical models: role of multiple phytoplankton groups. J. Geophys. Res. C 112 C08001. DOI: 1029/2006JC003852.

Fulton E.A., Link J.S., Kaplan I.C., Savina-Rolland M., Johnson P., Ainsworth C., Horne P., Gorton R., Gamble R.J., Smith A.D.M. Smith D.C. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish. Fish. 12: 171-188.

Haidvogel D.B., Arango H., Budgell W.P., Cornuelle B.D., Curchitser E., Di Lorenzo E., Fennel K., Geyer W.R., Hermann A.J., Lanerolle L., Levin J., McWilliams J.C., Miller A.J., Moore A.M., Powell T.M., Shchepetkin A.F., Sherwood C.R., Signell R.P., Warner J.C., Wilkin J. 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 227: 3595-3624.

Hollowed A.B., Barange M., Ito S-I., Kim S., Loeng H. Peck M. (eds.). 2011. Climate change effects on fish and fisheries: forecasting impacts, assessing ecosystem responses, and evaluating management strategies. ICES J. Mar. Sci. 68(6): 983-1372.

Hilborn R. 2007. Reinterpreting the state of fisheries and their management. Ecosystems 10: 1362-1369.

Ito S., Rose K. A., Miller A. J., Drinkwater K., Brander K., Overland J. E., Sundby S., Curchitser E., Hurrell J. W., Yamanaka Y. 2010. Ocean ecosystem responses to future global change scenarios: a way forward. In: Barange M., Field J.G., Harris R.H., Hofmann E., Perry R.I., Werner F. (eds.), Global Change and Marine Ecosystems. Oxford University Press, New York, pp. 287-322.

Latour R., Brush M.J., Bonzek C.F. 2003. Toward ecosystem-based fisheries management: strategies for multispecies modeling and associated data requirements. Fisheries 28: 10-22.[10:TEFM]2.0.CO;2

Mackinson S., Beecham J., Aldridge J. 2009. Frankenstein models? Coupling Ecopath with Ecosim to biogeochemical models. MEECE (Marine Ecosystem Evolution in a Changing Environment) Newsletter 2: 5.

Martell S.J.D., Pine W.E., Walters C.J. 2008. Parameterizing age-structured models from a fisheries management perspective. Can. J. Fish. Aquat. Sci. 65: 1586-1600.

Nathan R. 2008. An emerging movement ecology paradigm. Proc. Nat. Acad. Sci. 105: 19050-10951. PMid:19060197    PMCid:2614713

Pauly D., Christensen V., Walters C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57: 697-706.

Pikitch E.K., Santora C., Babcock E. A., Bakun A., Bonfil R., Conover D.O., Dayton P., Doukakis P., Fluharty D., Heneman B., Houde E.D., Link J., Livingston P.A., Mangel M., McAllister M.K., Pope J., Sainsbury K.J. 2004. Ecosystem-based fishery management science. Science 305: 346-347. PMid:15256658

Plaganyi E.E. 2007. Models for an ecosystem approach to fisheries. FAO (Food and Agriculture Organization of the United Nations). Fish. Tech. Pap. 477.

Railsback S. F. 2001. Concepts from complex adaptive systems as a framework for individual-based modelling. Ecol. Model. 139: 47-62.

Rose K.A., Allen J.I., Artioli Y., Barange M., Blackford J., Carlotti F., Cropp R., Daewel U., Edwards K., Flynn K., Hill S.L., HilleRisLambers R., Huse G., Mackinson S., Megrey B., Moll A., Rivkin R., Salihoglu B., Schrum C., Shannon L., Shin Y.-J., Smith S.L., Smith C., Solidoro C., St. John M., Zhou M. 2010. End-to-end models for the analysis of marine ecosystems: challenges,issues, and next steps. Mar. Coast. Fish. 2: 115-130.

Rose K.A., Cowan J.H., Winemiller K.O., Myers R.A., Hilborn R. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding, and prognosis. Fish. Fish. 2: 293-327.

Stock C.A., Alexander M.A., Bond N.A., Brander K., Cheung W.W.L., Curchitser E.N., Delworth T.L., Dunne J.P., Griffies S.M., Haltuch M.A., Hare J.A., Hollowed A.B., Lehodey P., Levin S.A., Link J.S., Rose K.A., Rykaczewski R.R., Sarmiento J.L., Stouffer R.J., Schwing F.B., Vecchi G.A., Werner F.E. 2011. On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr. 88: 1-27.

Travers M., Shin Y.-J., Jennings S., Cury P. 2007. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog. Oceanogr. 75: 751-770.

Wildhaber M.L., Lamberson P.J. 2004. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations. Ecol. Model. 175: 395-409.

Worm B., Hilborn R., Baum J.K., Branch T.A., Collie J.S., Costello C., Fogarty M.J., Fulton E.A., Hutchings J.A., Jennings S., Jensen O.P., Lotze H.K., Mace P.M., McClanahan T.R., Minto C., Palumbi S.R., Parma A.M., Ricard D., Rosenberg A.A., Watson R., Zeller D. 2009. Rebuilding global fisheries. Science 325: 578-585. PMid:19644114

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support