Scientia Marina, Vol 84, No 2 (2020)

Potential biomass and distribution of octopus in the eastern part of the Campeche Bank (Yucatán, Mexico)

Otilio Avendaño
Centro de Investigación y de Estudios Avanzados del IPN - Universidad de Ciencias y Artes de Chiapas,, Mexico

Alvaro Hernández-Flores
Universidad Marista de Mérida, Mexico

Iván Velázquez-Abunader
Centro de Investigación y de Estudios Avanzados del IPN, Mexico

Carlos Fernández-Jardón
Facultad de Ciencias Económicas y Empresariales, Universidad de Vigo, Spain

Alfonso Cuevas-Jimenez
Universidad Marista de Mérida, Mexico

Ángel Guerra
ECOBIOMAR, Instituto de Investigaciones Marinas, CSIC, Spain


The octopus fishery on the Campeche Bank (Yucatán, Mexico) is considered the third largest in the world. In Yucatán, two fleets target this resource: an artisanal fleet and a semi-industrial fleet. The artisanal fleet only catches Octopus maya, while the semi-industrial fleet catches two species, O. Maya and O. “vulgaris” Type II, because it operates at deeper waters ( > 30 m). Since there is no information on the abundance of O. “vulgaris” Type II, management is based only on O. Maya. In order to generate information about the abundance of this species, four fishing research cruises were carried out in the northeastern area of the continental shelf off the Yucatán Peninsula. Four methods (a stratified random method, a swept area, geostatistics and a weighted swept area) were applied and compared to determine the instantaneous abundance and biomass of both species in the study area. The lowest potential biomass was calculated with the geostatistical method, with values between 18.5% and 36.7% lower than the other three methods. O. “vulgaris” Type II showed the lowest biomass (37.8±3.36 t) during May and July and the highest (189.56±11.6 t) in December. Our findings revealed that the total abun­dance of both species was similar in the study area, with a geographic overlap whose amplitude changed throughout the year according to the geographic position: O. Maya dominated at approximately 88°W, while O. “vulgaris” Type II dominated towards the southeast at 87°W.


biomass; distribution pattern; Octopus maya; Octopus “vulgaris” Type II; Campeche Bank; Yucatán Peninsula; Mexico

Full Text:



Afkhami M.E., McIntyre P.J., Strauss S.Y. 2014. Mutualist-medi­ated effects on species’ range limits across large geographic scales. Ecol. Lett. 17: 1265-1273.

Amor M.D., Norman M.D., Roura A., et al. 2017. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zool. Scr. 46: 275-288.

Amor M.D., Doyle S.R., Norman M.D., et al. 2019. Genome-wide sequencing uncovers cryptic diversity and mito-nuclear discord­ance in the Octopus vulgaris species complex. BioRxiv 573493.

Avendaño O., Velázquez-Abunader I., Fernández-Jardón C., et al. 2019. Biomass and distribution of the red octopus (Octopus maya) in the north-east of the Campeche Bank. J. Mar. Biol. Assoc. U.K. 99: 1317-1323.

Ávila-Poveda O.H., Koueta N., Benítez-Villalobos F., et al. 2016. Reproductive traits of Octopus maya (Cephalopoda: Octopoda) with implications for fisheries management. Molluscan Res. 36: 29-44.

Beléndez-Moreno L.F.J., Espino-Barr E., Galindo-Cortes G., et al. 2014. Sustentabilidad y pesca responsable en México eval­uación y manejo. Secretaría de Agricultura, Ganadería. Desar­rollo Rural, Pesca y Alimentación (SAGARPA). Mexico.

Brassel K.E., Reif D. 1979. A procedure to generate Thiessen poly­gons. Geogr. Anal. 11: 289-303.

Cochran W.G. 1978. Técnicas de muestreo (CECSA). Compañía Editorial Continental. Mexico. 513 pp.

Cornell H. 2011. Niche Overlap. In: Hastings A., Gross L.J. (eds), Encyclopedia of Theoretical Ecology. University of California Press. California, USA. pp. 489-497.

Cressie N. 1992. Statistics for spatial data. Terra Nova 4: 613-617.

Diario Oficial de la Federación (DOF). 2016. Norma Oficial Mexi­cana NOM008SAG/PESC2015, para ordenar el aprovechami­ento de las especies de pulpo en las aguas de jurisdicción federal del Golfo de México y Mar Caribe. April 13, 2016. SAGARPA. Ciudad de México.

Dubranna J., Pérez-Brunius P., López M., et al. 2011. Circulation over the continental shelf of the western and southwestern Gulf of Mexico. J. Geophys. Res. 116: C08009.

Emery T.J., Hartmann K., Gardner C. 2016. Management issues and options for small scale holobenthic octopus fisheries. Ocean Coast. Manage. 120: 180-188.

Enríquez C., Mariño-Tapia I.J., Herrera-Silveira J.A. 2010. Dis­persion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 30: 127-137.

Galindo-Cortes G., Hernández-Flores Á., Santos-Valencia J. 2014. Pulpo del Golfo de México Octopus maya y Octopus vulgaris. In: Beléndez-Moreno L.F.J., Espino-Barr E., et al. (eds). Sus­tentabilidad y Pesca Responsable en México, Evaluación y Manejo. INAPESCA. pp.177-207.

Gamboa-Álvarez M.Á., López-Rocha J.A., Poot-López G.R. 2015. Spatial analysis of the abundance and catchability of the red octopus Octopus maya (Voss and Solis-Ramírez, 1966) on the continental shelf of the Yucatán peninsula, México. J. Shellfish Res. 34: 481-492.

Guerra A. 1981. Spatial distribution pattern of Octopus vulgaris Cuvier. J. Zool. Lond. 195: 133-146.

Hernández-Flores A., Condal A., Poot-Salazar A., et al. 2015. Geo­statistical analysis and spatial modeling of population density for the sea cucumbers Isostichopus badionotus and Holothuria floridana on the Yucatan Peninsula, Mexico. Fish. Res. 172: 114-124.

Hilborn R., Walters C. 1992. Quantitative fisheries stock assess­ment: choice, dynamics and uncertainty. Chapman-Hall, New York, 570 pp.

Jurado-Molina J. 2010. A Bayesian framework with implementation error to improve the management of the red octopus (Octopus maya) fishery off the Yucatán Peninsula. Cienc. Mar. 36: 1-14.

Lee T.N., Williams E. 1999. Mean distribution and seasonal vari­ability of coastal currents and temperature in the Florida Keys with implications on larval recruitment. Bull. Mar. Sci. 64: 35-56.

Leite T.S., Haimovici M., Mather J., et al. 2009. Habitat, distri­bution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: Information for management of an artisanal fishery inside a marine protected area. Fish. Res. 98: 85-91.

Leporati S.C., Hart A.M., Larsen R., et al. 2015. Octopus life history relative to age, in a multi-geared developmental fishery. Fish. Res. 165: 28-41.

Lima F.D., Berbel-Filho W.M., Leite T.S., et al. 2017. Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidenti­fication to octopus fisheries management. Mar. Biodivers. 47: 723-734.

López-Rocha J.A., Arreguín-Sánchez F. 2013. Spatial dynamics of the red grouper Epinephelus morio (Pisces: Serranidae) on the Campeche Bank, Gulf of Mexico. Sci. Mar. 77: 313-322.

Morey S.L., Zavala-Hidalgo J., O’Brien J.J. 2006. The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model. In: Sturges W., Lugo-Fernandez A., (eds). Circulation in the Gulf of Mexico. Observations and models. Geophysical Monograph Series. Washington, DC. USA. 203-218.

Nevárez-Martínez M.O., Hernández-Herrera A., Morales-Bo­jórquez E., et al. 2000. Biomass and distribution of the jumbo squid (Dosidicus gigas; d’Orbigny, 1835) in the Gulf of Califor­nia, Mexico. Fish. Res. 49: 129-140.

Norman M.D., Finn J.K., Hochberg F.G. 2014. Family Octopo­didae. In: Jereb P., Roper C.F.E., et al. (eds), Cephalopods of the world. An annotated and illustrated catalogue of cephalo­pod species known to date. Volume 3. Octopods and vampire squids. FAO Species Catalogue for Fishery Puroises. No. 4, Vol. 3, FAO, Rome. pp. 36-215.

Oosthuizen A., Smale M.J. 2003. Population biology of Octopus vulgaris on the temperate south-eastern coast of South Africa. J. Mar. Biol. Assoc. U.K. 83: 535-541.

Paris C.B., Cowen R.K., Claro R., et al. 2005. Larval transport pathways from Cuban spawning aggregations (Snappers; Lut­janidae) based on biophysical modeling. Mar. Ecol. Prog. Ser. 296: 93-106.

Pauly D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Stud. Rev. 8. 325 pp.

Pecl G.T., Jackson G.D. 2008. The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev. Fish Biol. Fish. 18: 373-385.

Pierce G.J., Guerra A. 1994. Stock assessment methods used for cephalopod fisheries. Fish Res. 21: 255-285.

Pierce G.J., Valavanis V.D., Guerra A., et al. 2008. A review of cephalopod-environment interactions in European Seas and other world areas. Hydrobiologia 612: 49-70.

Ritschard E.A., Guerrero-Kommritz J., Sanchez J.A. 2019. First molecular approach to the octopus fauna from the southern Caribbean. PeerJ 7: e7300.

Rivoirard J., Simmonds J., Foote K.G., et al. 2008. Geostatistics for Estimating Fish Abundance. Blackwell Science, London. 206 pp.

Rodhouse P.G.K., Pierce G.J., Nichols O.C., et al. 2014. Environ­mental effects on cephalopod population dynamics: implica­tions for management of fisheries. In: Vidal E.A.G (eds), Ad­vances in Cephalopod Sciences: Biology, Ecology, Cultivation and Fisheries, Adv. Mar. Biol. 67: 99-233.

Rosenberg A., Kirkwood G., Crombie J., et al. 1990. The assess­ment of stocks of annual squid species. Fish. Res. 8: 335-350.

Salas S., Cabrera M., Palomo L., et al. 2008. Plan de manejo y oper­ación del comité de administración pesquera de escama y pulpo. Informe Final. Cinvestav IPN. Merida, Mexico.

Salas S., Torres-Irineo E., Coronado E. 2019. Towards a métier-based assessment and management approach for mixed fisher­ies in Southeastern Mexico. Mar. Policy 103: 148-159.

Sauer W.H., Gleadall I.G., Downey-Breedt N., et al. 2020. World Octopus Fisheries. Rev. Fish. Sci. Aquac.

Sawatzky D., Raines G., Bonham-Carter G., et al. 2009. Spatial Data Modeller (SDM): ArcMAP 9.2 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks.

Schoener T.W. 1968. The Anolis lizards of Bimini: Resource parti­tioning in a complex fauna. Ecology 49: 704-726.

Solís-Ramírez M.J. 1994. La pesquería del pulpo del Golfo de Mé­xico y Caribe Mexicano. In: Atlas Pesquero y Pesquerías Rel­evantes de México. CD Multimedia. Secretaria de Pesca, INP. CENEDIC. Universidad de Colima, Mexico.

Solís-Ramírez M., Chávez E. 1986. Evaluación y régimen óptimo de pesca del pulpo. de la península de Yucatán. An. Itto. Cienc. Mar Limnol.UNAM 13: 1-18.

Tester P.A., Stumpf R.P., Vukovich F.M., et al. 1991. An expatriate red tide bloom: transport, distribution, and persistence. Limnol. Oceanogr. 36: 1053-1061.

Van Nieuwenhove A.H.M., Ratsimbazafy H.A., Kochzius M. 2019. Cryptic diversity and limited connectivity in octopuses: Recom­mendations for fisheries management. PloS ONE 14: e0214748.

Velázquez-Abunader I., Salas S., Cabrera M.A. 2013. Differential catchability by zone, fleet, and size: the case of the red octopus (Octopus maya) and common octopus (Octopus vulgaris) fish­ery in Yucatan, Mexico. J. Shellfish Res. 32: 845-854.

Webster R., Oliver M.A. 2007. Geostatistics for environmental sci­entists. JWS. Chichester. England.

Zar J.H. 1999. Biostatistical analysis. Prentice Hall. Upper Saddle River, New Jersey. USA.

Zavala-Hidalgo J., Parés-Sierra A., Ochoa J. 2002. Seasonal vari­ability of the temperature and heat fluxes in the Gulf of Mexico. Atmósfera 15: 81-104.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support