Scientia Marina, Vol 76, No 1 (2012)

Potential zooplankton preys (Copepoda and Appendicularia) for Engraulis anchoita in relation to early larval and spawning distributions in the Patagonian frontal system (SW Atlantic Ocean)


https://doi.org/10.3989/scimar.2012.76n1039

Mariela L. Spinelli
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Marcelo Pájaro
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Argentina

Patricia Martos
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Argentina

Graciela B. Esnal
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Marina Sabatini
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Argentina

Fabiana L. Capitanio
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Abstract


We investigated the spatial distribution of the abundance, biomass and size of zooplankton (nauplii, calanoids, cyclopoids and appendicularians) in relation to the distribution of first-feeding larvae and eggs of Engraulis anchoita across the frontal system of Peninsula Valdés. Twelve samples of zooplankton and ichthyoplankton were taken with small Bongo (67 μm) and Pairovet (200 μm) nets during the spring of 2004 along two transects. The total abundance of zooplankton and the chlorophyll a concentration were higher in homogeneous waters, while total biomasses were higher in stratified waters. Temperature was negatively correlated with biological variables and was the main factor affecting the zooplankton distribution. In both transects, abundance peaks of first-feeding larvae were detected at coastal stations along with the smallest fraction of zooplankton ( < 500 μm), while the largest fraction was dominant at the external stations, coinciding with the highest egg abundance. The physical structure of this front generates different levels of food availability for first-feeding larvae. Calanoids (southern transect) and cyclopoids (northern transect) are predominant followed by nauplii and appendicularians. The biomass of zooplankton preys contributes to the carbon transfer to the upper trophic levels and is probably important for the survival and growth of anchovy larvae in this frontal system.

Keywords


southwestern Atlantic Ocean; North Patagonian frontal system; copepods; appendicularians; zooplankton-anchovy linkage

Full Text:


PDF

References


Acha E.M., Mianzan H., Guerrero R., Favero M., Bava J. 2004. Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J. Mar. Sci. 44: 83-105.

Bacha M., Amara R. 2009. Spatial temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuar. Coast. Shelf Sci. 85: 257-264. http://dx.doi.org/10.1016/j.ecss.2009.08.009

Behrends G. 1996. Long term investigations of seasonal mesozooplankton dynamics in Kiel Bight, Germany. Proceedings of the 13th. Baltic Marine Biology Symposium, Jurmala, Latvia, Inst. Aquat. Ecol., Univer. Latvia, Riga, Latvia, 93-98.

Berggreen U., Hansen B., Kiørboe T. 1988. Food size spectra ingestion and growth of the copepod Acartia tonsa during development. Implications for determination of copepod production. Mar. Biol. 99: 341-352. http://dx.doi.org/10.1007/BF02112126

Bezzi S. 2000. Síntesis de las evaluaciones y sugerencias de manejo efectuadas sobre el recurso merluza (Merluccius hubbsi) entre el año 1986 y mayo de 1997. INIDEP Inf. Téc. 30. INIDEP, Argentina, pp 1-16.

Bollens S.M., Frost B.W., Thoreson D.S., Watts S. 1992. Diel vertical migration in zooplankton: a field test of the predator avoidance hypothesis. Hydrobiologia. 234: 33-39. http://dx.doi.org/10.1007/BF00010777

Buono J., Cucchi Colleoni D. 2009. Proceso de imágenes satelitales de clorofila. INIDEP Inf. Técnico 19. INIDEP, Argentina, pp 11-20.

Capitanio F.L., Pájaro M., Esnal, G.B. 1997. Appendicularians in the diet of anchovy Engraulis anchoita in the Argentine Sea. Sci. Mar. 61: 9-15.

Capitanio F.L., Esnal G.B. 1998. Vertical distribution of the maturity stages of Oikopleura dioica (Tunicata, Appendicularia) in the frontal system off Valdés Peninsula, Argentina. Bul. Mar. Sci. 63: 531-539.

Capitanio F., Pájaro M., Esnal G. 2005. Appendicularians: an important food supply for the Argentine anchovy Engraulis anchoita in coastal waters. J. Appd. Ich. 21: 414-419. http://dx.doi.org/10.1111/j.1439-0426.2005.00657.x

Capitanio F.L., Curelovich J., Tresguerres M., Negri R., Viñas M.D., Esnal G. 2008. Seasonal cycle of appendicularians at a coastal station (38º28´S, 57º41´W) of the SW Atlantic Ocean. Bul. Mar. Sci. 82: 171-184.

Carreto J.I., Benavides H.R., Negri R.M., Glorioso P.D. 1986. Toxic red tide in the Argentine sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. J. Plankton Res. 8: 15-28. http://dx.doi.org/10.1093/plankt/8.1.15

Castro L.R., Claramunt G., Krautz M.C., Llanos-Rivera A., Moreno P. 2009. Egg trait variation in anchoveta Engraulis ringens: a maternal response to changing environmental conditions in contrasting spawning habitats. Mar. Ecol. Prog. Ser. 381: 237-248 http://dx.doi.org/10.3354/meps07922

Castro L.R., Claramunt G., González H.E., Krautz M.C., Llanos-Rivera A. Méndez J., Schneider W., Soto S. 2010. Fatty acids in eggs of anchoveta Engraulis ringens during two contrasting winter spawning seasons. Mar. Eco. Prog. Ser. 420: 193-205. http://dx.doi.org/10.3354/meps08819

Cushing J., Dennis M.B., Desharnais R.A., Costantino R.F. 1996. An interdisciplinary approach to understanding nonlinear ecological dynamics. Ecol. Model. 92: 111-119. http://dx.doi.org/10.1016/0304-3800(95)00170-0

Deibel D., Lee S.H. 1992. Retention efficiency of submicrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoenffeni. Mar. Ecol. Prog. Ser. 81: 25-30. http://dx.doi.org/10.3354/meps081025

Diaz M.V., Pájaro M., Sánchez R.P. 2009. Employment of morphometric variables to assess nutritional condition of Argentine anchovy larvae Engraulis anchoita (Hubbs and Marini, 1935). Rev. Biol. Mar. Oceanogr. 44: 539-549. http://dx.doi.org/10.4067/S0718-19572009000300002

Flood P.R., Deibel D., Morris C. 1992. Filtration of colloidal melanin from seawater by planktonic tunicates. Nature 355: 630-632. http://dx.doi.org/10.1038/355630a0

Franz H.G., Gonzalez S.R. 1995. The reproduction of Oithona similis (Copepoda: Cyclopoida) in the Southern Ocean. ICES J. Mar. Sci. 52: 549-555. http://dx.doi.org/10.1016/1054-3139(95)80069-7

Glorioso P. 1987. Temperature distribution related to shelf-sea fronts on the Patagonian shelf. Cont. Shelf Res. 7: 27-34. http://dx.doi.org/10.1016/0278-4343(87)90061-6

Gorsky G., Fenaux F. 1998. The role of Appendicularians in marine food webs. In: Bone Q. (ed.). The biology of Pelagic Tunicates. Oxford University Press, pp. 161-169.

Hansen J.E., Cousseau M.B., Gru D.L. 1984. Características poblacionales de la anchoíta (Engraulis anchoita) del Mar Argentino. Parte I. El largo medio al primer año de vida, crecimiento y mortalidad. Revista de Investigación y Desarrollo Pesquero. 4: 21-48.

Hjort J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological researches. Rapp. p-v Réu., Con. int. Expl. Mer 20: 1-128.

Hopcroft R.R., Roff J.C. 1998. Production of tropical larvaceans in Kingston Harbour, Jamaica: are we ignoring an important secondary producer? J. Plankton Res. 20: 557-569. http://dx.doi.org/10.1093/plankt/20.3.557

Hunter J.R., Alheit J. 1995. International GLOBEC Small Pelagic Fishes and Climate Change program. Report of the First Planning Meeting. GLOBEC Report No. 8, México.

Jaspers C., Nielsen T.G., Garstensen J., Hopcroft R.R., Møller E.F. 2009. Metazooplankton distribution across the Southern Indian Ocean with emphasis on the role of Larvaceans. J. Plankton Res. 31: 525-540. http://dx.doi.org/10.1093/plankt/fbp002 PMCid:2667276

Kiørboe T. 1991. Pelagic fisheries and spatio-temporal variability in zooplankton productivity. In: Proceedings of the Fourth International Conference on Copepoda. Bull. Plankton Soc. Jpn. Sp. Vol. 229-249.

Kiørboe T. 1998. Population regulation and role of mesozooplankton in shaping marine pelagic food webs. Hydrobiologia 363: 13-27.

Largier J.L. 1993. Estuarine fronts: how important are they? Estuaries 16: 1-11. http://dx.doi.org/10.2307/1352760

Last J.M. 1980. The food of twenty species of fish larva e in the west-central North Sea. Fish. Res. Tech. Rep. 60: 1-44.

Macchi G.J. Pájaro M., Dato C. 2007. Spatial variations of the Argentine hake (Merluccius hubbsi Marini, 1993) spawning shoals in the Patagonian area during a reproductive season. Rev. Biol. Mar. Ocea. 42: 345-356.

Mann K.H., Lazier J.R.N. 1993. Dynamics of Marine Ecosystems. Biological Physical Interactions. In: Blackwell (ed.) The Oceans, 2nd. Cambridge, USA. 480 pp.

Marrari M., Viñas M.D., Martos P., Hernández D. 2004. Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34-41°S) during austral spring: Relationship with the hydrographic conditions. ICES J. Mar. Sci. 61: 667-679. http://dx.doi.org/10.1016/j.icesjms.2004.03.025

Martos P., Sánchez R.P. 1997. Caracterización oceanográfica de regiones frontales en la plataforma Patagónica en relación con áreas de desove y cría de la anchoita (Engraulis anchoita). In: Coloquio Argentino de Oceanografía, IAPSO-IADO (Conicet), Bahía Blanca, Argentina.

Morote E., Olivar R.P., Villate F., Uriarte I. 2008. Diet of round sardinella, Sardinella aurita, larvae in relation to plankton availability in the NW Mediterranean. J. Plankton Res. 7: 807-816. http://dx.doi.org/10.1093/plankt/fbn039

Morote E., Olivar M.P., Villate F., Uriarte I. 2010. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny. ICES J. Mar. Sci. 5: 897-908. http://dx.doi.org/10.1093/icesjms/fsp302

Nakamura Y. 1998. Blooms of tunicates Oikopleura spp. and Dolioletta gegenbauri in the Seto Inland Sea, Japan, during summer. Hydrobiologia 385: 183-192. http://dx.doi.org/10.1023/A:1003531812536

Nielsen T.G., Sabatini M. 1996. Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser. 139: 79-93. http://dx.doi.org/10.3354/meps139079

Olivar M.P., Emelianov M., Villate F., Uriarte I., Maynou F., Alvarez I., Morote E. 2010. The role of oceanographic conditions and plankton availabilityin larval fish assemblages off the Catalan coast (NW Mediterranean). Fish. Oceanogr. 19: 209-229. http://dx.doi.org/10.1111/j.1365-2419.2010.00538.x

Pájaro M. 1998. El canibalismo como mecanismo regulador denso-dependiente de mortalidad natural en la anchoíta argentina (Engraulis anchoita). Su relación con las estrategias reproductivas de la especie. PhD Thesis, Univ. Nacional de Mar del Plata, Argentina, 297 pp.

Pájaro M., Macchi G., Leonarduzzi E., Hansen J.E. 2009a. Spawning biomass of Argentine anchovy (Engraulis anchoita) from 1996 to 2004 using the daily egg production method. J. Mar. Biol. Assoc. U.K. 89: 829-837. http://dx.doi.org/10.1017/S0025315408003019

Pájaro M., Martos P., Leonarduzzi E., Díaz M.V., Di Mauro R., Sabatini M. 2009b. Estrategia de puesta de la anchoíta argentina (Engraulis anchoita) en relación con áreas frontales. I Simposio Iberoamericano de “Ecología Reproductiva, Reclutamiento Pesquerías”, Vigo, España.

Rothschild B.J., Osborn T.R. 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res. 10: 465-474. http://dx.doi.org/10.1093/plankt/10.3.465

Sabatini M., Kiørboe T. 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 16: 1329-1351. http://dx.doi.org/10.1093/plankt/16.10.1329

Sabatini M., Martos P. 2002. Mesozooplankton features in a frontal area off northern Patagonia (Argentina). Sci. Mar. 66: 215-232.

Sánchez R.P., Ciechomski J.D. 1995. Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Sci. Mar. 59: 455-478.

Sánchez R.P., Pájaro M., Macchi G.J. 1996. The application of the daily egg production method to the assessment of the SW Atlantic anchovy, (Engraulis anchoita), spawning biomass off Argentina. Inter. Council Expl. Sea. 1-29.

Sánchez R., Madirolas A., Reta R., Ehrlich M.D., Álvarez Colombo G., Macchi G. 1997. The reproductive biology of the patagonian sprat (Sprattus fuegensis): several facts and still some speculations. ICES Ann. Sci. Conf. 10 pp.

Santos B.A., Ramírez F.C. 1995. Distribución y abundancia de copépodos en el sistema frontal de Península Valdés, durante florecimientos fitoplanctónicos. Thalassas 11: 133-142.

Sanvicente-Añorve L., Soto L.A., Espinosa-Fuentes M.L., Flores-Coto C. 2006. Relationship patterns between ichthyoplankton and zooplankton: a conceptual model. Hydrobiologia 559: 11-22. http://dx.doi.org/10.1007/s10750-005-1323-x

Sato R., Ishibashi Y., Tanaka Y., Ishimaru T., Dagg M.J. 2008. Productivity and grazing impact of Oikopleura dioica (Tunicata, Appendicularia) in Tokio Bay. J. Plankton Res. 30: 299-309. http://dx.doi.org/10.1093/plankt/fbn001

Simpson J.H. 1981. The shelf-sea fronts: implications of their existence and behaviour. Phil. Trans. Roy. Soc. London 302: 531-546. http://dx.doi.org/10.1098/rsta.1981.0181

Sommer F., Stibor H., Sommer U., Velimirov B. 2000. Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions. Mar. Ecol. Progr. Ser. 199: 43-53. http://dx.doi.org/10.3354/meps199043

Sommer F., Hansen T., Feuchtmayr H., Santer B., Tokle N., Sommer U. 2003. Do calanoids copepods suppress appendicularians in the coastal ocean? J. Plankton Res. 27: 869-871. http://dx.doi.org/10.1093/plankt/25.7.869

Stibor H., Vadstein O., Lippert B., Roederer W., Olsen Y.R. 2004. Calanoid copepods and nutrient enrichment determine population dynamics of the appendicularian Oikopleura dioica: a mesocosm experiment. Mar. Ecol. Progr. Ser. 270: 209-215. http://dx.doi.org/10.3354/meps270209

Tönnesson K., Maar M., Vargas C., Friis Moller E., Satapoomin S., Zervoudaki S., Christou E., Giannarkourou A., Sell A., Kjerulf P.J., Nielsen T.G., Tiselius P. 2005. Grazing impact of Oikopleura dioica and copepods on an autumn plankton community. Mar. Biol. Res. 1: 365-373.

Viñas M.D., Ramírez F.C. 1996. Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch. Fish. Mar. Res. 43: 231-256.

Viñas M.D., Negri R.M., Ramírez F.C., Hernández D. 2002. Zooplankton assemblages and hydrography in the spawning area of anchovy (Engraulis anchoita) off Río de la Plata estuary (Argentina, Uruguay). Mar. Freshwater Res. 53: 1031-1043.




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es