Scientia Marina, Vol 75, No 4 (2011)

The emergence of regularity and variability in marine ecosystems: the combined role of physics, chemistry and biology


https://doi.org/10.3989/scimar.2011.75n4719

Ford Ballantyne IV
Department of Ecology and Evolutionary Biology University of Kansas, United States

Oscar M.E. Schofield
Institute for Marine and Coastal Sciences Rutgers University 71, United States

Simon A. Levin
Department of Ecology and Evolutionary Biology, Princeton University, United States

Abstract


Marine ecosystems play an integral role in the functioning of life on earth. To predict how they will respond to global changes, and to effectively manage and maintain services upon which humans rely, we must understand how biological processes at the cellular level generate macroscopic patterns in the oceans. Here, we discuss how physics and biogeochemistry influence and constrain marine ecosystem structure and function, and outline key regularities and patterns of variability that models should aim to reproduce. We identify unanswered questions regarding how size-dependent physiological and ecological processes are linked to turbulent mixing, dealing specifically with how size structure is related to mixing over a range of spatial scales and how it is linked to the fate of primary production in the sea.

Keywords


variability; turbulence; scaling; abundance; trophic interactions; modelling

Full Text:


PDF

References


Abraham, E.R. – 1998. The generation of plankton patchiness by turbulent stirring. Nature, 391: 577-580. http://dx.doi.org/10.1038/35361

Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reill and F. Thingstad. – 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser., 10: 257-263. http://dx.doi.org/10.3354/meps010257

Ballantyne, F. – 2005. The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth. Evol. Ecol. Res., 7: 1213-1220.

Ballantyne, F., D.N.L. Menge and J.S. Weitz. – 2010. A discrepancy between predictions of saturating nutrient uptake models and nitrogen to phosphorus stoichiometry in the surface ocean. Limnol. Oceanogr., 55: 997-1008. http://dx.doi.org/10.4319/lo.2010.55.3.0997

Bambach, R.K. – 1993. Seafood through time: changes in biomass, energetics and productivity in the marine ecosystem. Paleobiology, 19: 372-397.

Bearon, R.N., D. Grunbaum and R.A. Cattolico. – 2004. Relating cell-level swimming behaviors to vertical population distributions in Heterosigma akashiwo (Raphidophyceae), a harmful alga. Limnol. Oceanogr., 49: 607-613. http://dx.doi.org/10.4319/lo.2004.49.2.0607

Behrenfeld, M.J., K. Worthington, R.M. Sherrell, F.P. Chavez, P. Strutton, M. McPhaden and D.M. Shea. – 2006. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature, 442: 1025-1028. http://dx.doi.org/10.1038/nature05083 PMid:16943835

Belyayeva, T.V. – 1970. Taxonomy and distribution patterns of planktonic diatoms in the equatorial Pacific. Oceanology, 10: 101-107.

Bertilsson, S., O. Berglund, D.M. Karl and S.W. Chisholm. – 2003. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr., 48: 1721-1731. http://dx.doi.org/10.4319/lo.2003.48.5.1721

Bidigare, R.R. and M.E. Ondrusek. – 1996. Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific ocean. Deep Sea Res. Part II, 43: 809-833. http://dx.doi.org/10.1016/0967-0645(96)00019-7

Birch, D.A., W.R. Young and P.J.S. Franks. – 2008. Thin layers of plankton: Formation by shear and death by diffusion. Deep-Sea Res., I 55: 277-295. http://dx.doi.org/10.1016/j.dsr.2007.11.009

Bracco, A., S. Clayton and C. Pasquero. – 2009. Horizontal advection, diffusion, and plankton spectra at the sea surface. J. Geophysical Res., 114: CO2001. http://dx.doi.org/10.1029/2007JC004671

Cavender-Bares, K., D.M. Karl and S.W. Chisholm. – 2001. Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep-Sea Res. I, 48: 2373-2395. http://dx.doi.org/10.1016/S0967-0637(01)00027-9

Cermeño, P., E. Marañon, D. Harbour and R.P. Harris. – 2006. Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. Ecol. Lett., 9: 1210-1215. http://dx.doi.org/10.1111/j.1461-0248.2006.00973.x PMid:17040323

Cheriton, O.M., M.A. McManus, M.T. Stacey, J.V. Steinbuck and J.P. Ryan. – 2009. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar. Ecol. Progr. Ser., 378: 55-69. http://dx.doi.org/10.3354/meps07847

Chisholm, S.W. – 1992. Phytoplankton size, In: P.G. Falkowski and A.D. Woodhead (eds.), Primary productivity and biogeochemical cycles in the sea. Plenum Press.

Cox, P.M., R.A. Betts, C.D. Jones and S.A.S.I.J. Totterdell. – 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184-187. http://dx.doi.org/10.1038/35041539 PMid:11089968

Davis, C.S. and D.J. McGillicuddy. – 2005. Transatlantic abundance of the n2-fixing colonial cyanobacterium Tricodesmium. Science, 312: 1517-1520. http://dx.doi.org/10.1126/science.1123570 PMid:16763148

DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N. Freigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm and D.M. Karl. – 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311: 496-503. http://dx.doi.org/10.1126/science.1120250 PMid:16439655

Demartini, E.E., A.M. Friedlander, S.A. Sandin and E. Sala. – 2008. Differences in fish-assemblage structure between fished and unfished atolls in the northern line islands, central Pacific. Mar. Ecol. Progr. Ser., 365: 199-215. http://dx.doi.org/10.3354/meps07501

Denman, K.L. and M.R. Abbot. – 1994. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery. J. Geophysical Res., 99: 7433-7442. http://dx.doi.org/10.1029/93JC02149

Denman, K.L., H.J. Freeland and D.L. Mackas. – 1989. Comparisons of time scales for biomass transfer up the marine food web and coastal transport processes. Can. Spec. Publ. Fish. Aquat. Sci., 108: 255-264.

Denman, K.L., A. Okubo and T. Platt. – 1977. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr., 22: 1033-1038. http://dx.doi.org/10.4319/lo.1977.22.6.1033

Deutsch, C., J.L. Sarmiento, D.M. Sigman, N. Gruber and J.P. Donne. – 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 445: 163-167. http://dx.doi.org/10.1038/nature05392 PMid:17215838

Durham, W.M., J.O. Kessler and R. Stocker. – 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science, 323: 1067-1070. http://dx.doi.org/10.1126/science.1167334 PMid:19229037

Edwards, A.M., T. Platt and D.G. Wright. – 2001. Biologically induced circulation at fronts. J. Geophysical Res., 106: 7081-7095. http://dx.doi.org/10.1029/2000JC000332

Falkowski, P.G., R.T. Barber and V. Smetacek. – 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281: 200-206. http://dx.doi.org/10.1126/science.281.5374.200 PMid:9660741

Falkowski, P.G. and C. de Vargas. – 2004. Shotgun sequencing in the sea: A blast from the past? Science, 304: 58-60. http://dx.doi.org/10.1126/science.1097146 PMid:15066774

Falkowski, P.G. and M.J. Oliver. – 2007. Mix and match: how climate selects phytoplankton. Nature Rev. Microbiol., 5: 813-818. http://dx.doi.org/10.1038/nrmicro1751 PMid:17853908

Fasham, M.J.R. – 2003. Ocean Biogeochemistry: the Role of the Ocean Carbon Cycle in Global Change. Springer Verlag, Berlin.

Finkel, Z. – 2007. Does phytoplankton cell size matter: The evolution of modern marine food webs. In: P.G. Falkowski and A.H. Knoll (eds.), Evolution of primary producers in the sea. Academic Press, San Diego, CA.

Flierl, G., D. Grünbaum, S.A. Levin and D. Olson. – 1999. From individuals to aggregations: the interplay between behavior and physics. J. Theoret. Biol., 196: 397-454. http://dx.doi.org/10.1006/jtbi.1998.0842 PMid:10036198

Follows, M.J., S. Dutkiewicz, S. Grant and S.W. Chisholm. – 2007. Emergent biogeography of microbial communities in a model ocean. Science, 315: 1843-1846. http://dx.doi.org/10.1126/science.1138544 PMid:17395828

Franks, P.J.S. – 1995. Thin-layers of phytoplankton: a model of formation by near-inertial wave shear. Deep-Sea Res. I, 42: 75-91. http://dx.doi.org/10.1016/0967-0637(94)00028-Q

Franks, P.J.S. – 2002. Npz models of plankton dynamics: their construction, coupling to physics and application. J. Oceanogr., 58: 379-387. http://dx.doi.org/10.1023/A:1015874028196

Franks, P.J.S. – 2005. Plankton patchiness, turbulent transport and spatial spectra. Mar. Ecol. Progr. Ser., 294: 295-309. http://dx.doi.org/10.3354/meps294295

Frias-Lopez, J., Y. Shi, G.W. Tyson, M.L. Coleman, S.C. Schuster, S.W. Chisholm and E.F. DeLong. – 2008. Microbial community gene expression in ocean surface waters. Proc. Nat. Acad. Sci. USA, 105: 3805-3810. http://dx.doi.org/10.1073/pnas.0708897105 PMid:18316740    PMCid:2268829

Fuhrman, J. – 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399: 541-548. http://dx.doi.org/10.1038/21119 PMid:10376593

Fuhrman, J., I. Hewson, M.S. Schwalbach, J.A. Steele, M.V. Brown and S. Naeem. – 2006. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Nat. Acad. Sci. USA, 103: 13104-13109. http://dx.doi.org/10.1073/pnas.0602399103 PMid:16938845    PMCid:1559760

Fuhrman, J.A., J.A. Steele, I. Hewson, M.S. Schwalbach, M.V. Brown, J.L. Green and J.H. Brown. – 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Nat. Acad. Sci. USA, 105: 7774-7778. http://dx.doi.org/10.1073/pnas.0803070105 PMid:18509059    PMCid:2409396

Geider, R.J. and J. LaRoche. – 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol., 37: 1-17. http://dx.doi.org/10.1017/S0967026201003456

Gilbert, O.M. and E.J. Busky. – 2005. Turbulence decreases the hydrodynamic predator sensing ability of the calanoid copepod Acartia tonsa. J. Plankton Res., 27: 1067-1071. http://dx.doi.org/10.1093/plankt/fbi066

Granata, T.C. and T.D. Dickey. – 1991. The fluid mechanics of copepod feeding in turbulent flow: A theoretical approach. Progr. Oceanogr., 26: 243-261. http://dx.doi.org/10.1016/0079-6611(91)90003-5

Gruber, N. and J.L. Sarmiento. – 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11: 235-266. http://dx.doi.org/10.1029/97GB00077

Grünbaum, D. – 1994. Translating stochastic density-dependent individual behavior to a continuum model of animal swarming. J. Math. Biol., 33: 139-161. http://dx.doi.org/10.1007/BF00160177

Grünbaum, D. – 2002. Predicting availability to consumers of spatially and temporally variable resources. Hydrobiologia, 480: 175-191. http://dx.doi.org/10.1023/A:1021296103358

Grünbaum, D. and A. Okubo. – 1994. Frontiers of Theoretical Biology, Lecture Notes in Biomathematics, volume 100, chapter Modelling social animal aggregations, Springer-Verlag.

Guadayol, O., F. Peters, J.E. Stiansen, C. Marrasé and A. Lohrmann.– 2009. Evaluation of oscillating grids and orbital shakers as means to generate isotropic and homogeneous small-scale turbulence in laboratory enclosures commonly used in plankton studies. Limnol. Oceanogr. Meth., 7: 287-303. http://dx.doi.org/10.4319/lom.2009.7.287

Haury, L.R., J.A. McGowan and P.H. Wiebe. – 1978. Patterns and processes in the time-space scales of plankton distributions. In: J.H. Steele (ed.), Spatial pattern in plankton communities. Plenum Press, pp. 277-327.

Hoegh-Guldberg, O. and J.F. Bruno. – 2010. The impact of climate change on the World’s Marine Ecosystems. Science, 328: 1523-1528. http://dx.doi.org/10.1126/science.1189930 PMid:20558709

Huisman, J., M. Arrayas, U. Ebert and B. Sommeijer. – 2002. How do sinking phytoplankton species manage to persist? Am. Nat., 159: 245-254. http://dx.doi.org/10.1086/338511 PMid:18707377

Hwang, J.S., J.H. Costello and J.R. Strickler. – 1994. Copepod grazing in turbulent flow: elevated foraging behavior and habituation of escape responses. J. Plankton Res., 16: 421-431. http://dx.doi.org/10.1093/plankt/16.5.421

Irwin, A.J., Z.V. Finkel, O.M.E. Schofield and P.G. Falkowski. – 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankton Res., 28: 459-471. http://dx.doi.org/10.1093/plankt/fbi148

Iversen, K.R., R. Primicerio, A. Larsen, J.K. Egge, F. Peters, O. Guadayol, A. Jacobsen, H. Havskum and C. Marrasé. – 2010. Effects of small-scale turbulence on lower trophic levels under different nutrient conditions. J. Plankton Res., 32: 197-208. http://dx.doi.org/10.1093/plankt/fbp113

Jennings, S. and S. Mackinson. – 2003. Abundance-body mass relationships in size-structured food webs. Ecol. Lett., 6: 971-974. http://dx.doi.org/10.1046/j.1461-0248.2003.00529.x

Jiang, L., O.M.E. Schofield and P.G. Falkowski. – 2005. Adaptive evolution of phytoplankton cell size. Am. Nat., 166: 496-505. http://dx.doi.org/10.1086/444442 PMid:16224705

Johnson, Z.I., E.R. Zinser, A. Coe, N.P. McNulty, E. Malcolm, S. Woodard and S.W. Chisholm. – 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science, 311: 173-1740. http://dx.doi.org/10.1126/science.1118052 PMid:16556835

Kamykowski, D., E.J. Milligan and R.E. Reed. – 1998. Relationships between geotaxis/photoaxis and diel vertical migration in autrophic dinflagellates. J. Plankton Res., 20: 1781-1796. http://dx.doi.org/10.1093/plankt/20.9.1781

Kamykowski, D., R.E. Reed and G.J. Kirkpatrick. – 1992. Comparison of sinking velocity, swimming velocity, rotation and path characteristics among six marine dinoflagellate species. Mar. Biol., 113: 319-328.

Karl, D.M., K.M. Bjorkman, J.E. Dore, L. Fujieki, D.V. Hebel, T. Houlihan, R.M. Letelier R.M. and L.M. Tupas. – 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-Sea Res. II, 48: 1529-1566. http://dx.doi.org/10.1016/S0967-0645(00)00152-1

Kerr, R.A. – 2010. Ocean acidification unprecedented, unsettling. Science, 328: 1500-1501. http://dx.doi.org/10.1126/science.328.5985.1500 PMid:20558701

Kerr, S.R. – 1974. Theory of size distribution in ecological communities. J. Fish. Res. Board Can., 31: 1859-1862. http://dx.doi.org/10.1139/f74-241

Klausmeier, C.A., E. Litchman, T. Daufresne and S.A. Levin. – 2004. Optimal nitrogen-to-phosphorous stoichiometry of phytoplankton. Nature, 429: 171-174. http://dx.doi.org/10.1038/nature02454 PMid:15141209

Kolmogorov, A.M. – 1941a. Dissipation of energy under locally isotropic turbulence. Dokl. Akad Nauk SSSR, 32: 16-18.

Kolmogorov, A.M. – 1941b. The local structure of turbulence in an incompressible fluid with very large Reynolds numbers. Dokl. Akad Nauk SSSR, 30: 301-305.

Lekan, J.F. and R.E. Wilson. – 1978. Spatial variability of phytoplankton biomass in the surface waters of long island. Estuar. Coast. Mar. Sci., 6: 239-251. http://dx.doi.org/10.1016/0302-3524(78)90013-0

Leonard, C.L., C.R. McClain, R. Murtugudde, E.E. Hofmann and L.W. Harding. – 1999. An iron-based ecosystem model of the central equatorial Pacific. J. Geophys. Res., 104: 1325-1341. http://dx.doi.org/10.1029/1998JC900049

Letelier, R.M., R.R. Bidigare, D.V. Hebel, M.E. Ondrusek, C.D. Winn and D.M. Karl. – 1993. Temporal variability of phytoplankton community structure based on pigment analysis. Limnol. Oceanogr., 38: 1420-1437. http://dx.doi.org/10.4319/lo.1993.38.7.1420

Levin, S.A. – 1992. The problem of pattern and scale in ecology. Ecology, 73: 1943-1967. http://dx.doi.org/10.2307/1941447

Levin, S.A. – 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1: 431-436. http://dx.doi.org/10.1007/s100219900037

Levin, S.A. – 1999. Fragile Dominion: Complexity and the Commons. Perseus Books, Reading, MA.

Levin, S.A. – 2010. Crossing scales, crossing disciplines: collective motion and collective action in the global commons. Phil. Trans. Roy. Soc. Lond. B, 365: 13-18. http://dx.doi.org/10.1098/rstb.2009.0197 PMid:20008381    PMCid:2842704

Levin, S.A. and J. Lubchenco. – 2008. Resilience, robustness, and marine ecosystem-based management. Bioscience, 58: 27-32. http://dx.doi.org/10.1641/B580107

Levin, S.A., A. Morin and T.H. Powell. – 1989. Patterns and process in the distribution and abundance of Antarctic krill, in Scientific Committee for the Conservation of Antarctic Marine Living Resources. In: Selected Scientific Papers, Part 1, 2nd edition, SC-CAMLR-SSP/5, CCAMLR, Hobart, Tasmania, Australia, pp. 281-299.

Li, W.K.W. – 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature, 419: 154-157. http://dx.doi.org/10.1038/nature00994 PMid:12226662

Lima, I.D. and S.C. Doney. – 2004. A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic. Global Biogeochem. Cycles, 18: GB3019. http://dx.doi.org/10.1029/2003GB002146

Litchman, E., C.A. Klausmeier, J.R. Miller, O.M. Schofield and P.G. Falkowski. – 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences, 3: 585-606. http://dx.doi.org/10.5194/bg-3-585-2006

Mackas, D.L. – 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr., 29: 451-471. http://dx.doi.org/10.4319/lo.1984.29.3.0451

Mackas, D.L., R.E. Thomson and M. Galbraith. – 2001. Changes in the zooplankton community of the British Columbia continental margin, 1985-1999, and their covariation with oceanographic conditions. Can. J. Fish. Aquat. Sci., 58: 685-702. http://dx.doi.org/10.1139/f01-009

Margalef, R. – 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1: 493-509.

Margalef, R., M. Estrada and D. Blasco. – 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: D.L. Taylor and H.H. Selinger (eds.) Toxic Dinoflagellate blooms, pp. 89-94. Elsevier/North Holland.

Martin, A.P. – 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Progr. Oceanogr., 57: 125-174. http://dx.doi.org/10.1016/S0079-6611(03)00085-5

McManus, M.A., R.M. Kudela, M.W. Silver, G.F. Steward, P.L. Donaghay and J.M. Sullivan. – 2008. Cryptic blooms: are thin layers the missing connection? Estuar. Coast., 31: 396-401. http://dx.doi.org/10.1007/s12237-007-9025-4

Moison, M., F.G. Schmitt, S. Souissi, L. Seuront and J. Hwang. – 2009. Symbolic dynamics and entropies of copepod behavior under non-turbulent and turbulent conditions. J. Mar. Syst., 77: 388-396. http://dx.doi.org/10.1016/j.jmarsys.2008.11.002

Moline, M.A., S.M. Blackwell, J.F. Chase, S.H.D. Haddock, C.M. Herren, C.M. Orrico and E. Terrill. – 2009. Bioluminescence to reveal structure and interaction of coastal planktonic communities. Deep Sea Res. Part II, 56: 232-245. http://dx.doi.org/10.1016/j.dsr2.2008.08.002

Moore, J.K., S.C. Doney, J.A. Kleypas, D.M. Glover and I.Y. Fung. – 2002. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II, 49: 403-462. http://dx.doi.org/10.1016/S0967-0645(01)00108-4

Morel, F.M.M. – 1983. Principles of aquatic chemistry, John Wiley and Sons. Oschlies A. 2002. Can eddies make oceans bloom? Global Biogeochem. Cycles, 16: 1106.

Phillips, O.M. – 1991. The Kolmogorov spectrum and its oceanic cousins: a review. Proc. R. Soc. Lond. A, 434: 125-138. http://dx.doi.org/10.1098/rspa.1991.0084

Platt, T. and K. Denman. – 1977. Organisation in the pelagic ecosystem. Heloglander wiss. Meeresunters, 30: 575-581. http://dx.doi.org/10.1007/BF02207862

Pomeroy, L. – 1974. The ocean’s food web, a changing paradigm. Bioscience, 24: 499-504. http://dx.doi.org/10.2307/1296885

Pond, S. and G.L. Pickard. – 1983. Introductory dynamical oceanography, Butterworth Heinemann.

Poulin, F.J. and P.J.S. Franks. – 2010. Size-structured planktonic ecosystems: constraints, controls and assembly instructions. J. Plankton Res., 328.

Powell, T.M. and A. Okubo. – 1994. Turbulence, diffusion and patchiness in the sea. Phil. Trans. Roy. Soc. Lond. B, 343: 11-18. http://dx.doi.org/10.1098/rstb.1994.0002

Quigg, A., Z.V. Finkel, A.J. Irwin, Y. Rosenthal, T. Ho, J.R. Reinfelder, O. Schofield, F.M.M. Morel and P.G. Falkowski. 2003. The evolutionary inheritance of elemental stoichiometry in marine plankton. Nature, 425: 291-294. http://dx.doi.org/10.1038/nature01953 PMid:13679916

Raven, J.A. and P.G. Falkowski. – 1999. Oceanic sinks for atmospheric CO2. Plant Cell Environ., 22: 741-755. http://dx.doi.org/10.1046/j.1365-3040.1999.00419.x

Redfield, A.C. – 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 205-221.

Rinaldo, A., A. Maritan, K. Cavender-Bares, S.W. Chisholm. – 2002. Cross-scale ecological dynamics and microbial size spectra in marine ecosystems. Proc. R. Soc. Lond. B, 269: 2051-2059. http://dx.doi.org/10.1098/rspb.2002.2102 PMid:12396505    PMCid:1691128

Rodríguez, J. – 1994. Some comments on the size-based structural analysis of the pelagic ecosystem. Sci. Mar., 58: 1-10.

Rodríguez, J., J. Tintoré, J.T. Allen, J.M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodríguez, F. Echevarría and F. Jiménez-Gómez. – 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature, 410: 360-363. http://dx.doi.org/10.1038/35066560 PMid:11268210

Ryther, J.H. – 1969. Photosynthesis and fish production in the sea. Science 166: 72-76. http://dx.doi.org/10.1126/science.166.3901.72 PMid:5817762

Sarmiento, J.L. and J.R. Toggweiler. – 1984. A new model for the role of the oceans in determining atmospheric pco2. Nature, 308: 621-624. http://dx.doi.org/10.1038/308621a0

Scheffer, M., S. Rinaldi, J. Huisman and F.J. Weissing. – 2003. Why phytoplankton communities have no equilibrium: solutions to the paradox. Hydrobiologia, 491: 9-18. http://dx.doi.org/10.1023/A:1024404804748

Schmittner, A., A. Oschlies, X. Giraud, M. Eby and H.L. Simmons. – 2005. A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochem. Cycles, 19: GB3004. http://dx.doi.org/10.1029/2004GB002283

Schofield, O.M.E., H.W. Ducklow, D.G. Martinson, M.P. Meredith, M.A. Moline and W.R. Fraser. – 2010. How do Polar Marine Ecosystems Respond to Rapid Climate Change? Science, 328: 1520-1523. http://dx.doi.org/10.1126/science.1185779 PMid:20558708

Seymour, J.R., Marcos and R. Stocker. – 2009. Resource patch formation and exploitation throughout the marine microbial food web. Am. Nat., 173: E15-E29. http://dx.doi.org/10.1086/593004 PMid:19053839

Sheldon, R.W., A. Prakash and W. H. Sutcliffe J. – 1972. The size distribution of particles in the ocean. Limnol. Oceanogr., 17: 327-340. http://dx.doi.org/10.4319/lo.1972.17.3.0327

Silvert, W. and T. Platt. – 1978. Energy flux in the pelagic ecosystem: A time-dependent equation. Limnol. Oceanogr., 23: 813-816. http://dx.doi.org/10.4319/lo.1978.23.4.0813

Smayda, T.J. – 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev., 8: 353-414.

Smetacek, V. and U. Passow. – 1990. Spring bloom initiation and Sverdrup’s critical-depth model. Limnol. Oceanogr., 35: 228-234. http://dx.doi.org/10.4319/lo.1990.35.1.0228

Starr, J.L. and M.M. Mullin. – 1981. Zooplankton assemblages in three areas of the North Pacific as revealed by continuous horizontal transects. Deep-Sea Res., 28: 1303-1322. http://dx.doi.org/10.1016/0198-0149(81)90036-4

Steele, J.H. and B.W. Frost. – 1977. The structure of plankton communities. Phil. Trans. Roy. Soc. Lond. B, 280: 485-534. http://dx.doi.org/10.1098/rstb.1977.0119

Stock, C.A., T.M. Powell and S.A. Levin. – 2008. Bottom-up and top-down forcing in a simple size-structured plankton dynamics model. J. Mar. Syst., 74: 134-152. http://dx.doi.org/10.1016/j.jmarsys.2007.12.004

Stommel, H. – 1963. Varieties of oceanographic experience. Science, 139: 572-576. http://dx.doi.org/10.1126/science.139.3555.572 PMid:17788284

Strom, S.L. – 2008. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 320: 1043-1045. http://dx.doi.org/10.1126/science.1153527 PMid:18497289

Sullivan, J.M., P.L. Donaghay and J.E.B. Rines. – 2009. Coastal thin layer dynamics: Consequences to biology and optics. Cont. Shelf Res., 30: 50-65. http://dx.doi.org/10.1016/j.csr.2009.07.009

Sverdrup, H.U. – 1953. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci., 18: 287-295. http://dx.doi.org/10.1093/icesjms/18.3.287

Taylor, L.R. – 1961. Aggregation, variance and the mean. Nature, 189: 732-735. http://dx.doi.org/10.1038/189732a0

Tenneke, H. and J.L. Lumley. – 1972. A first course in turbulence. MIT Press.

Therriault, J., D.J. Lawrence and T. Platt. – 1978. Spatial variability of phytoplankton turnover in relation to physical processes in a coastal environment. Limnol. Oceanogr., 23: 900-911. http://dx.doi.org/10.4319/lo.1978.23.5.0900

Thomas, W.H. and C.H. Gibson. – 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep-Sea Res., 37: 1583-1593. http://dx.doi.org/10.1016/0198-0149(90)90063-2

Vaillancourt, R.D., J. Marra, M.P. Seki, M.L. Parsons and R.B. Bidigare. – 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Res. I, 50: 829-847. http://dx.doi.org/10.1016/S0967-0637(03)00059-1

Walsh, J.J. – 1981. A carbon budget for overfishing off Peru. Nature, 290: 300-304. http://dx.doi.org/10.1038/290300a0

Weber, L.H., S.Z. El-Sayed and I. Hampton. – 1986. The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa. Deep-Sea Res., 33: 1327-1343. http://dx.doi.org/10.1016/0198-0149(86)90039-7

Wroblewski, J.S., J.J. O’Brien and T. Platt. – 1975. On the physical and biological scales of phytoplankton patchiness in the ocean. Mem. Soc. Roy. Sci. Liege, 6: 43-57.

Yoder, J.A., C.R. McClain, J.O. Blanton and L. Oey. – 1987. Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf. Limnol. Oceanogr., 32: 929-941. http://dx.doi.org/10.4319/lo.1987.32.4.0929

Yoshiyama, K. and C.A. Klausmeier. – 2008. Optimal cell size for resource uptake in fluids: a new facet of resource competition. Am. Nat., 171: 59-70. http://dx.doi.org/10.1086/523950 PMid:18171151




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es