Scientia Marina, Vol 75, No 2 (2011)

Size-fractionated phytoplankton biomass and production in the tropical Atlantic

Enrique Moreno-Ostos
Departamento de Ecología y Geología, Universidad de Málaga, Spain

Ana Fernández
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Spain

María Huete-Ortega
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Spain

Beatriz Mouriño-Carballido
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Spain

Alejandra Calvo-Díaz
Instituto Español de Oceanografía, Centro Oceanográfico de Xixón, Spain

Xosé Anxelu G. Morán
Instituto Español de Oceanografía, Centro Oceanográfico de Xixón, Spain

Emilio Marañón
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Spain


Two meridional transects were conducted in the tropical and subtropical Atlantic to describe (i) the spatial variability of total and size-fractionated (picophytoplankton and phytoplankton > 2 μm) chlorophyll a (chl a) concentration and primary production, (ii) the relative contribution of each phytoplankton size fraction to total biomass and carbon fixation, and (iii) the spatial variability of size-fractionated phytoplankton growth rate (P/B) and assimilation number (P/chl a) in the ocean. The highest chl a for both size fractions was observed in the Western Tropical Atlantic province (WTRA), while the lowest chl a was found in the upper mixed layer (UML) of the South Atlantic Tropical gyre (SATL). A similar pattern was found for carbon fixation. Within the SATL, the highest picophytoplankton contribution to total production was recorded at the Deep Chlorophyll Maximum (DCM), while the contribution of phytoplankton > 2 μm was higher in the UML. Additionally, the relative contribution of large phytoplankton to total integrated primary production was higher than its contribution to total biomass. Both size fractions depicted maximum P/B and P/chl a in WTRA surface waters. In the SATL province, phytoplankton > 2 μm showed the highest P/B and P/chl a along the UML, while picophytoplankton P/B and P/chl a peaked around the DCM. We suggest that the differential impact of light on small and large phytoplankton may help to explain the contrasting dynamics of the two size classes.


phytoplankton; cell size; spatial variability; oligotrophic subtropical gyres; primary production; biomass

Full Text:



Agustí, S. and C.M. Duarte. – 1999. Phytoplankton chlorophyll a distribution and water column stability in the central Atlantic Ocean. Oceanol. Act., 22: 193-203.

Agustí, S. and M. Llabrés. – 2007. Solar radiation-induced mortality of marine pico-phytoplankton in the oligotrophic ocean. Photochem. Photobiol., 83: 793-801 doi:10.1111/j.1751-1097.2007.00144.x PMid:17645649

Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. – 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263 doi:10.3354/meps010257

Banaszak, A.T. – 2003. Photoprotective physiological and biochemical responses of aquatic organisms. In: E.W. Helbling and H. Zagarese (eds.), UV effects in aquatic organisms and ecosystems, pp. 329-356. Royal Society of Chemistry, Cambridge.

Behrenfeld, M.J., E. Boss, D.A. Siegel and D.M. Shea. – 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles., 19, GB1006.

Cermeño, P., E. Marañón, J. Rodríguez and E. Fernández. – 2005. Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar. Ecol. Prog. Ser., 297: 51-60 doi:10.3354/meps297051

Cox, J.L., P.H. Wiebe, P. Ortner and S. Boyd. – 1982. Seasonal development of subsurface chlorophyll maxima in Slope Water and Northern Sargasso Sea of the Northwestern Atlantic Ocean. Biol. Oceanogr., 1: 271-285.

Eppley, R.W. – 1972. Temperature and phytoplankton growth in the sea. Fish. Bull., 70: 1063-1085.

Fernández, A., B. Mouriño-Carballido, A. Bode, M. Varela and E. Marañón. – 2010. Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosciences, 7: 3167-3176 doi:10.5194/bg-7-3167-2010

Fernández, E., E. Marañón, X.A.G. Morán and P. Serret. – 2003. Potential causes for the unequal contribution of picophytoplankton to total biomass and productivity in oligotrophic waters. Mar. Ecol. Prog. Ser., 254: 101-109 doi:10.3354/meps254101

Finkel, Z.V., J. Beardall, K.J. Flynn, A. Quigg, T.A.V. Rees and J.A. Raven. – 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res., 32(1): 119-137 doi:10.1093/plankt/fbp098

Frenette, J.J., S. Demers, L. Legendre and M. Boulé. – 1996. Size-related photosynthetic characteristics of phytoplankton during periods of seasonal mixing in an oligotrophic multibasin lake system. J. Plankton Res., 18: 45-61 doi:10.1093/plankt/18.1.45

García-Pichel, F. – 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet screen. Limnol. Oceanogr., 39: 1704-1717 doi:10.4319/lo.1994.39.7.1704

Grasshoff, K. – 1976. Methods of seawater analysis. Verlag Chemie, Winheim and New York.

Hashimoto, S. and A. Shiomoto. – 2002. Light utilization efficiency of size-fractionated phytoplankton in the subarctic Pacific, spring and summer 1999: high efficiency of large-size diatom. J. Plankton Res., 24(1): 83-87 doi:10.1093/plankt/24.1.83

Herbland, A. and B. Voituriez. – 1979. Hydrological structure analysis for estimating the primary production in the Tropical Atlantic Ocean. J. Mar. Res., 37(1): 87-101.

Joint, I.R. and A.J. Pomroy. – 1986. Photosynthetic characteristics of nanoplankton and picoplankton for the surface mixed layer. Mar. Biol., 92: 465-474 doi:10.1007/BF00392506

Key, T., A. McCarthy, D.A. Campbell, C. Six, S. Roy and Z.V. Finkel. – 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol., 12(1): 95-104 doi:10.1111/j.1462-2920.2009.02046.x PMid:19735282

Legendre, L. and J. Le Fèvre. – 1991. From individual plankton cells to pelagic marine ecosystems and to global biogeochemical cycles. In: S. Demers (ed.), Particle analysis in oceanography, pp. 261-300. Springer-Verlag, Heidelberg.

Legendre, L. and F. Rassoulzadegan. – 1996. Food-web mediated export of biogenic carbon in the oceans. Mar. Ecol. Prog. Ser., 145: 179-193 doi:10.3354/meps145179

Llabrés, M. and S. Agustí. – 2006. Picophytoplankton cell death induced by UV radiation: Evidence for oceanic Atlantic communities. Limnol. Oceanogr., 51: 21-29 doi:10.4319/lo.2006.51.1.0021

Longhurst, A. – 1998. Ecological geography of the sea. Academic Press, San Diego, CA.

Madariaga, I. and E. Fernández. – 1990. Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J. Mar. Biol. Assoc. UK, 70: 531-543 doi:10.1017/S0025315400036560

Malone, T.C. – 1980. Size-fractionated primary productivity of marine phytoplankton. In: P.G. Falkowski (ed.), Primary productivity in the sea, pp. 301-319. Plenum Press, New York.

Marañón, E. – 2005. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr., 50(1): 299-310 doi:10.4319/lo.2005.50.1.0299

Marañón, E., P.M. Holligan, M. Varela, B. Mouriño and A.J. Bale. – 2000. Basin-scale variability of phytoplankton biomass, production and growth rate in the Atlantic Ocean. Deep-Sea Res. I, 47: 825-857 doi:10.1016/S0967-0637(99)00087-4

Marañón, E., P.M. Holligan, R. Barciela, N. González, B. Mouriño, M.J. Pazó and M. Varela.-2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser., 216: 43-56 doi:10.3354/meps216043

Marañón, E., M.J. Behrenfeld, N. González, B. Mouriño and M.V. Zubkov. – 2003. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser., 257: 1-11 doi:10.3354/meps257001

Moore, C.M., M.M. Mills, R. Langlois, A. Milne, E.P. Achterger, L. La Roche and R.J. Geider. – 2008. Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr., 53: 291-305 doi:10.4319/lo.2008.53.1.0291

Morán, X.A.G., E. Fernández and V. Pérez. – 2004. Size-fractionated primary production, bacterial production and net community production in subtropical and tropical domains of the oligotrophic NE Atlantic in autumn. Mar. Ecol. Prog. Ser., 274: 17-29 doi:10.3354/meps274017

Pérez, V., E. Fernández, E. Marañón, X.A.G. Morán and M.V. Zubkov.– 2006. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep-Sea Res. I, 53: 1616-1634 doi:10.1016/j.dsr.2006.07.008

Platt, T., D.V. Subba Rao and B. Irwin. – 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 301: 702-704 doi:10.1038/301702a0

Poulton, A.J., P.M. Holligan, A. Hickman, Y-N. Kim, T.R. Adey, M.C. Stinchcombe, C. Holeton, S. Root and E.M.S. Woodward. – 2006. Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean. Deep-Sea Res. II, 53: 1593-1610 doi:10.1016/j.dsr2.2006.05.007

Raimbault, P., G. Slawyk, B. Coste and J. Fry. – 1990. Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Mar. Biol., 104: 347-351. Raven, J.A. – 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12: 503-513.

Raven, J.A. – 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12: 503-513 doi:10.1046/j.1365-2435.1998.00233.x

Raven, J.A., Z.V. Finkel and A.J. Irwin. – 2005. Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie Milieu, 55(3-4): 209-215.

Robinson, C., A.J. Poulton, P.M. Holligan, A.R. Baker, G. Forster, N. Gist, T.D. Jickells, G. Malin, R. Upsill-Goddard, R.G. Williams, E.M.S. Woodward and M.V. Zubkov. – 2006. The Atlantic Meridional Transect (AMT) Programme: A contextual view 1995-2005. Deep-Sea Res. II, 53: 1485-1515 doi:10.1016/j.dsr2.2006.05.015

Tarran, G.A., J.L. Heywood and M.V. Zubkov. – 2006. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep-Sea Res. II, 53: 1516-1529 doi:10.1016/j.dsr2.2006.05.004

Teira, E., B. Mouriño, E. Marañón, V. Pérez, M.J. Pazó, P. Serret, D. de Armas, J. Escánez, E.M.S. Woodward and E. Fernández.- 2005. Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: potential factors affecting phytoplankton activity. Deep-Sea Res. I, 52: 569-588 doi:10.1016/j.dsr.2004.11.007

Tremblay, J.E. and L. Legendre.-1994. A model for the size-fractionated biomass and production of marine phytoplankton. Limnol. Oceanogr., 39(8): 2004-2014 doi:10.4319/lo.1994.39.8.2004

Veldhuis, M.J.W., G.W. Kraay and K.R. Timmermans. – 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur. J. Phycol., 36: 167-177 doi:10.1080/09670260110001735318

Veldhuis, M.J.W., K.R. Timmermans, P. Croot and B.V.D. Wagt. – 2005. Picophytoplankton; a comparative study in their biochemical composition and photosynthesis properties. J. Sea Res., 53: 7-24 doi:10.1016/j.seares.2004.01.006

Welschmeyer, N.A. – 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39(8): 1985-1992 doi:10.4319/lo.1994.39.8.1985

Worden, A.Z., J.K. Nolan and B. Palenik. – 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr., 49(1): 168-179 doi:10.4319/lo.2004.49.1.0168

Zubkov, M.V., M.A. Sleigh, G.A. Tarran, P.H. Burkill, R.J.G. Leakey. – 1998. Picoplanktonic community structure on an Atlantic transect from 50ºN to 50ºS. Deep-Sea Res. I, 45: 1339-1355 doi:10.1016/S0967-0637(98)00015-6

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support