Scientia Marina, Vol 74, No 4 (2010)

Assessment of the status of the coastal groundfish assemblage exploited by the Viareggio fleet (Southern Ligurian Sea)


https://doi.org/10.3989/scimar.2010.74n4793

Alvaro Abella
Agenzia Regionale Protezione Ambiente Toscana , Italy

Michela Ria
Agenzia Regionale Protezione Ambiente Toscana , Italy

Cecilia Mancusi
Agenzia Regionale Protezione Ambiente Toscana , Italy

Abstract


The coastal demersal fish assemblage exploited commercially by the Viareggio fleet was assessed in order to define its exploitation status and sustainability. A production model was used provided management benchmarks for the species for which available data are limited. The ASPIC Surplus production model was used. The results showed a depleted population for most of the species involved (B2008/B0 between 0.05 and 0.35) with high relative fishing mortality (F2008/FMSY between 1.18 and 1.64). Population projections using ASPIC-P allowed the exploitation strategies to be evaluated for a 10-year period. None of the populations are predicted to recover to BMSY if fishing effort remains at the 2008 levels. A reduction in effort of about 40% should increase the biomass in the medium-term of most of the species to BMSY or over, with a fairly good increase in yields of the most valuable species.

Keywords


NW Mediterranean; multispecies fisheries; production models; stock assessment; commercial fisheries; forecasting

Full Text:


PDF

References


Abella, A. and F. Serena. – 1998. Stato di sfruttamento del nasello nei compartimenti di pesca di Livorno e Viareggio. Biol. Mar. Medit., 5(2): 136-150.

Abella, A., F. Serena, L. Fortunati, U. Mammini, D. Lari and R. Ciardelli. – 2001. Use of GIS for the analysis of spatial data on fishing effort and seasonal changes in fishing strategies for Tyrrhenian Sea bottom trawl fisheries. In: T. Nishida, C.E. Hollingworth, and P. Kailola (eds.), Proceedings of the First International Symposium on GIS in Fishery Science, pp. 119-129. Seattle, WA, 2-4 March 1999. Fishery GIS Research Group, Kawagoe, Saitama, Japan.

Abella, A., P. Carpentieri, A. Mannini, M. Ria, P. Sartor, C. Viva and A. Voliani. – 2005a. Use of fisheries independent data for the definition of the stock status of Mullus barbatus utilizing mortality rates based reference points. 7th Meeting of the Sub-Committee on Stock Assessment (SCSA) FAO, Rome, 26-30 September, 2005.

Abella, A., M. Ria and F. Serena. – 2005b. Usefulness of legal size for the recovery of a European hake stock in a North-western Mediterranean bottom trawl fishery. ICES CM 2005 W: 19.

Booth, A.J. and A.E. Punt. – 1998. Evidence for rebuilding in the panga stock on the Agulhas Bank, South Africa. Fish. Res., 34: 103-121. doi:10.1016/S0165-7836(97)00092-1

Bousquet, N., T. Duchesne and L. Rivest. – 2008. Redefining the maximum sustainable yield for the Schaefer population model including multiplicative environmental noise. J. Theor. Biol, 254: 1-26. doi:10.1016/j.jtbi.2008.04.025 PMid:18571675

Blueweiss, L., M. Fox, V. Kudzma, D. Nakashima, R. Peters and S. Sams. – 1978. Relationship between body size and some life-history parameters. Oecologia, 37: 257-272. doi:10.1007/BF00344996

Caddy, J. – 1998. A short review of precautionary reference points and some proposals for their use in data-poor situations. FAO Fish. Tech. Pap., 379, Rome. 29 pp.

Caddy, J. F. and O. Defeo. – 1996. Fitting the exponential and logistic surplus yield models with mortality data: some explorations and new perspectives. Fish. Res., 25: 39-62. doi:10.1016/0165-7836(95)00429-7

Cadrin, S. – 1999. A Precautionary Approach to Fishery Control Rules Based on Surplus Production Modeling. Proceedings, 5th NMFS NSAW. 1999. NOAA Tech. Memo. NMFS-F SPO-40.

Cadrin, S.X. and. E.M.C Hatfield. – 2002. Relative biomass and production of long fin inshore squid, Loligo pealeii. Bull. Mar. Sci., 71: 1115-1116.

Carbonell, A. and M. Azevedo. – 2003. Application of non-equilibrium production models to the red shrimp (Aristaeus antennatus, Risso, 1816) fishery in the northwestern Mediterraenan. Fish. Res., 65: 323-334 doi:10.1016/j.fishres.2003.09.023

Cortes, E. – 2000. Potential rates of increase and rates of increase for generation for three species of pelagic sharks from the Atlantic Ocean. Coll. Vol. Sci. ICCAT, 51(6): 1822-1828.

EC. – 2006. Commission of the European Communities. Communication from the Commission to the Council and the European Parliament. Implementing sustainability in EU fisheries through maximum sustainable yield. COM(2006)/360. http://europa.eu/legislation_summaries/maritime_affairs_and_fisheries/fisheries_resources_and_environment/166037_en.htm

Efron, B.E. and G. Gong. – 1983. A leisurely look at the bootstrap, the jackknife, and cross validation. Am. Stat., 47: 36-48. doi:10.2307/2685844

Eggert, H. and P. Martinsson. – 2003. Commercial fishers and expected utility. XV EAFE Conference, IFREMER, Session 12 Fisheries Dynamics.

Gedamke, T., J.M. Hoenig, J.A. Musick, W. DuPaul and S.H. Gruber.– 2007. Using demographic models to determine intrinsic rate of increase and sustainable fishing for elasmobranches: Pitfalls, Advances and Applications. N. Am. J. Fish. Manag., 27: 605-618. doi:10.1577/M05-157.1

Hilborn, R. and C.J. Walters. – 1992. Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty. Chapman and Hall.

Ludwig, D. and C.J. Walters. – 1989. A robust method for parameter estimation from actch and effort data. Can. J. Fish. Aquat. Sci., 46: 137-144 doi:10.1139/f89-018

NEFSC. – 2008. Panel Summary Report of the Groundfish Assessment Review Meeting (GARM III) Part 3. Biological Reference Points. 28 April – 2 May 2008 Northeast Fisheries Science Center Reference Document 05-13.

Pauly, D. – 1984. Fish population dynamics in tropical waters. A manual for use with programmable calculations. ICLARM, Stud. Rev., 8: 1-325.

Polachek, T., R. Hilborn and A. Punt. – 1993. Using Surplus Production Models: Comparing Methods and Measuring Uncertainty. Can. J. Fish. Aquat. Sci., 50: 2597-2601 doi:10.1139/f93-284

Prager, M. – 1994. A suite of extensions to a non-equilibrium surplus production model. Fish. Bull., 92: 374-389.

Prager, M. – 2005. Users Manual for ASPIC: A Stock-Production Model Incorporating Covariates (ver.5), NMFS, Beaufort Lab. Doc. BL-2004-01.

Prager, M., C.E. Porch, K.W. Shertzer and J.F. Caddy. – 2003. Targets and limits for management of fisheries: a simple probability-based approach. N. Am. J. Fish. Manag., 23: 349-361. doi:10.1577/1548-8675(2003)023<0349:TALFMO>2.0.CO;2

Punt, A.E. and R. Hilborn. – 1996. Biomass dynamic models. User’s manual. FAO Computerized Information Series. (Fisheries) No. 10. FAO, 62 pp.

Rijnsdorp, A., N. Daan and W. Dekker – 2006. Partial fishing mortality per fishing trip: a useful indicator of effective fishing effort in mixed demersal fisheries. ICES J. Mar. Sci, 63: 556-566. doi:10.1016/j.icesjms.2005.10.003

Schnute, J. – 1977. Improved estimates from the Schaefer production model: theoretical considerations. J. Fish. Res. Bd. Can., 34: 583-603.

Tserpes, G., J. Haralabous and D. Maravelias. – 2007 A non-equilibrium surplus production model approach utilizing MEDITS data. FAO-GFCM workshop on trawl survey based monitoring fishery system in the Mediterranean, Rome, 26-28 March 2007.

Prager, M.H. – 2002. Severe decline in abundance of the red porgy, Pagrus pagrus, population of the Atlantic Ocean off the south-eastern United States. Fish. Bull., 100: 351–375.

U.S. Department of Commerce. – 1996. Magnuson-Stevens Fishery Conservation and Management Act as amended through October 11, 1996. NOAA Tech. Mem. NMFS-F/SPO-23.

U.S. Department of Commerce. – 1998. Magnuson2Stevens provisions; national standard guidelines. Federal Register 63:84: 24212-24237.

Vaughan, D.S. and M.H. Prager. – 2002. Severe decline in abundance of the red porgy (Pagrus pagrus) population off the southeastern United States. Fish. Bull., 100(2): 351-375.

Ye, Y. and A.A. Rosenberg. – 1991. A study of the dynamics and management of the hairtail fishery, Trichiurus haumela, in the East China Sea. Aquat. Living. Resour., 4(2): 65-75. doi:10.1051/alr:1991007




Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es