Scientia Marina, Vol 74, No 3 (2010)

Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel

Bernardo Patti
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Sede di Capo Granitola , Italy

Cástor Guisande
Facultad de Ciencias, Campus Universitario Lagoas-Marcosende, Universidad de Vigo , Spain

Angelo Bonanno
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Sede di Capo Granitola , Italy

Gualtiero Basilone
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Sede di Capo Granitola , Italy

Angela Cuttitta
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Sede di Capo Granitola , Italy

Salvatore Mazzola
Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Sede di Capo Granitola , Italy


The northern sector of the Sicilian Channel is an area of favourable upwelling winds, which ought to support primary production. However, the values for primary production are low when compared with other Mediterranean areas and very low compared with the most biologically productive regions of the world’s oceans: California, the Canary Islands, Humboldt and Benguela. The aim of this study was to identify the main factors that limit phytoplankton biomass in the Sicilian Channel and modulate its monthly changes. We compared satellite-based estimates of chlorophyll a concentration in the Strait of Sicily with those observed in the four Eastern Boundary Upwelling Systems mentioned above and in other Mediterranean wind-induced coastal upwelling systems (the Alboran Sea, the Gulf of Lions and the Aegean Sea). Our results show that this low level of chlorophyll is mainly due to the low nutrient level in surface and sub-surface waters, independently of wind-induced upwelling intensity. Further, monthly changes in chlorophyll are mainly driven by the mixing of water column and wind-induced and/or circulation-related upwelling processes. Finally, primary production limitation due to the enhanced stratification processes resulting from the general warming trend of Mediterranean waters is not active over most of the coastal upwelling area off the southern Sicilian coast.


upwelling; Ekman transport; nutrients; chlorophyll a; Mediterranean Sea; Sicilian Channel

Full Text:



Agostini, V.N. and A. Bakun. – 2002. “Ocean triads” in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr., 11: 129-142. doi:10.1046/j.1365-2419.2002.00201.x

Astraldi, M., G.P. Gasparini, A. Vetrano and S. Vignudelli. – 2002. Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea. Deep-Sea Res. I, 49: 661-680. doi:10.1016/S0967-0637(01)00059-0

Bakun, A. – 1973. Coastal upwelling indices, west coast of North America. 1946-71. NOAA Tech. Rep. NMFS-671: 1-103.

Bakun, A. and V. Agostini. – 2001. Seasonal patterns of wind driven upwelling/downwelling in the Mediterranean Sea. Sci. Mar., 65: 243-257.

Baldacci, A., G. Corsini, R. Grasso, G. Manzella, J.T. Allen, P. Cipollini, T.H. Guymer and H.M. Snaith. – 2001. A study of the Alboran sea mesoscale system by means of empirical orthogonal function decomposition of satellite data. J. Mar. Syst., 29: 293-311. doi:10.1016/S0924-7963(01)00021-5

Barale, V., J.-M. Jaquet and M. Ndiaye. – 2008. Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998-2003). Remote Sens. Environ., 112: 3300-3313. doi:10.1016/j.rse.2007.10.014

Basilone, G., C. Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonanno and A. Kallianiotis. – 2004. Linking habitat conditions and growth in the European anchovy (Engraulis encrasicolus). Fish. Res., 68: 9-19. doi:10.1016/j.fishres.2004.02.012

Behrenfeld, M.J., R.T. O’Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier and E.S. Boss. – 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444: 752-755. doi:10.1038/nature05317 PMid:17151666

Beranger, K., L. Mortier, G.P. Gasparini, L. Gervasio, M. Astraldi and M. Cre’pon. – 2004. The dynamics of the Sicily Strait: A comprehensive study from observations and models. Deep-Sea Res. II, 51: 411-440. doi:10.1016/j.dsr2.2003.08.004

Boyer, T.P., J.I. Antonov, H.E. Garcia, D.R. Johnson, R.A. Locarnini, A.V. Mishonov, M.T. Pitcher, O.K. Baranova and I.V. Smolyar. – 2006. In: S. Levitus (ed.), World Ocean Database 2005. NOAA Atlas NESDIS 60, U.S. Government Printing Office, Washington, D.C., 190 p., DVDs.

Carr, M.E. – 2002. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep-Sea Res. II, 49: 59-80. doi:10.1016/S0967-0645(01)00094-7

Carr, M.E. and E.J. Kearns. – 2003. Production regimes in four Eastern Boundary Current systems. Deep-Sea Res. II, 50: 3199-3221. doi:10.1016/j.dsr2.2003.07.015

Carton JA, G. Chepurin, X. Cao and B. Giese. – 2000. A simple ocean data assimilation analysis of the global upper ocean 1950–95. J. Phys. Oceanogr. I, 30: 294-309. doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2

Crispi, G. and M. Pacciaroni. – 2009. Long-term numerical evolution of the nitrogen bulk content in the Mediterranean Sea. Est. Coast Shelf Sci., 83: 148-158. doi:10.1016/j.ecss.2007.12.015

Demarcq, H. – 2009. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr., 83: 376-385. doi:10.1016/j.pocean.2009.07.022

Estrada, M. – 1996. Primary production in the northwestern Mediterranean. Sci. Mar., 60: 55-64.

Feldman, G.C. and C.R. McClain. – 2006. Ocean Color Web. SeaWiFS Reprocessing 5. In: N. Kuring and S.W. Bailey (eds.), NASA Goddard Space Flight Center.,

Garcia, H.E., R.A. Locarnini, T.P. Boyer and J.I. Antonov. – 2006. World ocean atlas 2005, volume 4: nutrients (phosphate, nitrate, silicate). In: S. Levitus (ed.) NOAA Atlas NESDIS 64, pp. 1-396. U.S. Government Printing Office, Washington, D.C.

García-Lafluente, J., A. García, S. Mazzola, L. Quintanilla, J. Delgado, A. Cuttitta and B. Patti. – 2002. Hydrographic phenomena influencing early stages of the Sicilian Channel Anchovy. Fish. Oceanogr., 11: 31-44. doi:10.1046/j.1365-2419.2002.00186.x

Guisande, C., J.M. Cabanas, A.R. Vergara and I. Riveiro. – 2001. Effect of climate on recruitment success of Atlantic Iberian sardine (Sardina pilchardus). Mar. Ecol. Prog. Ser., 223: 243-250 doi:10.3354/meps223243

Guisande, C., A. Barreiro, I. Maneiro, I. Riveiro, A.R. Vergara and A. Vaamonde. – 2006. Tratamiento de datos. Díaz de Santos, Madrid.

Hardman-Mountford, N.J., A.J. Richarson, J.J. Agenbag, E. Hagen, L. Nykjaer, F.A. Shillington and C. Villacastin. – 2003. Ocean climate of the South East Atlantic observed from satellite data and wind models. Prog. Oceanogr., 59: 181-221. doi:10.1016/j.pocean.2003.10.001

Iverson, R.L. – 1990. Control of marine fish production. Limnol. Oceanogr., 35: 1593-1604. doi:10.4319/lo.1990.35.7.1593

Jennings, S., M.J. Kaiser and J.D. Reynolds, – 2001. Marine Fisheries Ecology. Blackwell Science, Oxford.

Joint, I. and S.B. Groom. – 2000. Estimation of phytoplankton production from space: Current status and future potential of satellite remote sensing. J. Exp. Mar. Biol. Ecol., 250: 233-255 doi:10.1016/S0022-0981(00)00199-4

Karafistan, A., J.-M. Martin, M. Rixen and J.M. Beckers. – 2002. Space and time distributions of phosphate in the Mediterranean Sea. Deep-Sea Res. I, 49: 67-82. doi:10.1016/S0967-0637(01)00042-5

Lermusiaux, P.F.J. – 1999. Estimation and study of mesoscale variability in the strait of Sicily. Dynam. Atmosph. Oceans, 29: 255-303. doi:10.1016/S0377-0265(99)00008-1

Lochet, F. and M. Leveau. – 1990. Transfers between a eutrophic ecosystem, the river Rhône, and an oligotrophic ecosystem, the north-western Mediterranean Sea. Hydrobiologia, 207: 95-103. doi:10.1007/BF00041445

Miller, R.G. – 1981. Simultaneous Statistical Inference. 2nd ed. Springer Verlag, New York.

Molcard, A., L. Gervasio, A. Griffa, G.P. Gasparini, L. Mortier and T.M. Özgökmen. – 2002. Numerical investigation of the Sicily Channel dynamics: density currents and water mass advection. J. Mar. Syst., 36: 219-238. doi:10.1016/S0924-7963(02)00188-4

Patti, B., C. Guisande, A.R. Vergara, I. Riveiro, I. Maniero, A. Barreiro, A. Bonanno, G. Buscaino, A. Cuttitta, G. Basilone and S. Mazzola. – 2008. Factors responsible for the differences in satellite–based chlorophyll a concentration between the major global upwelling areas. Est. Coast. Shelf Sci., 76: 775-786. doi:10.1016/j.ecss.2007.08.005

Piccioni, A., M. Gabrielle, E. Salusti and E. Zambianchi – 1988. Wind-induced upwellings off the southern coast of Sicily. Oceanol. Acta, 11: 309-314.

Reul, A., V. Rodríguez, F. Jiménez-Gómez, J.M. Blanco, B. Bautista, T. Sarhan, F. Guerrero, J. Ruíz and J. García-Lafuente. – 2005. Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean). Cont. Shelf Res., 25: 589-608. doi:10.1016/j.csr.2004.09.016

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes and W. Wang. – 2002. An improved in situ and satellite SST analysis for climate. J. Clim., 15: 1609-1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

Ribeiro, A.C., A. Peliz and A.M.P. Santos. – 2005. A study of the response of chlorophyll-a to a winter upwelling event off Western Iberian using SeaWiFS and in situ data. J. Mar. Syst., 53: 87-107. doi:10.1016/j.jmarsys.2004.05.031

Rykaczewski, R.R. and D.M. Checkley Jr. – 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. USA, 105: 1965-1970. doi:10.1073/pnas.0711777105 PMid:18250305    PMCid:2538866

Robinson, A.R., J. Sellschopp, A. Warn-Varnas, W.G. Leslie, C.J. Lozano, P.J. Haley Jr., L.A. Anderson and P.F.J. Lermusiaux. – 1999. The Atlantic Ionian Stream. J. Mar. Syst., 20: 129-156. doi:10.1016/S0924-7963(98)00079-7

Sarhan, T., J. Garci’a Lafuente, M. Vargas, J.M. Vargas and F. Plaza. – 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst., 23: 317-331. doi:10.1016/S0924-7963(99)00068-8

Schlitzer, R. – 2008. Ocean Data View.

Sorgente, R., A.F. Drago and A. Ribotti – 2003. Seasonal variability in the Central Mediterranean Sea circulation. Ann. Geophys., 21: 299-322. doi:10.5194/angeo-21-299-2003

StatSoft, Inc. – 2001. STATISTICA (data analysis software system), version 6.

Stergiou, K.I., E.D. Christou, D. Gergopoulos, A. Zenetos and C. Souvermezoglou. – 1997. The Hellenic seas: physics, chemistry, biology and fisheries. Oceanogr. Mar. Biol. Annu. Rev. 35: 415-538.

Thomas, A.C, P. Strub, F. Huang and C. James. – 1994. A comparison of the seasonal and interannual variability of phytoplankton pigment concentrations in the Peru and California Current System. J. Geophys. Res. 99: 7355-7370. doi:10.1029/93JC02146

Thomas, A.C., Strub, P.T., Carr, M.E. and Weatherbee, R. – 2004. Comparison of chlorophyll variability between the four major global eastern boundary currents. Int. J. Remote Sens., 25: 1443-1447. doi:10.1080/01431160310001592418

Warn-Varnas, A., J. Sellschopp, P.J. Haley Jr., W.G. Leslie and C.J. Lozano. – 1999. Strait of Sicily water masses. Dynam. Atmosph. Oceans, 29: 437-469. doi:10.1016/S0377-0265(99)00014-7

Ware, D.M. – 1992. Production characteristics of upwelling systems and the trophodynamic role of hake. In: A.I. Payne, K.H. Brink, K.H. Mann, and R. Hilborn (eds.), Benguela Trophic Functioning. S. Afr. J. Mar. Sci., 12: 501-513.

Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support