Hard-bottom succession of subtidal epibenthic communities colonizing hidden and exposed surfaces off northern Chile

Authors

  • Aldo S. Pacheco Alfred Wegener Institute for Polar and Marine Research
  • Jürgen Laudien Alfred Wegener Institute for Polar and Marine Research
  • Martin Thiel Facultad de Ciencias del Mar, Universidad Católica del Norte
  • Olaf Heilmayer Alfred Wegener Institute for Polar and Marine Research
  • Marcelo Oliva Facultad de Recursos del Mar, Universidad de Antofagasta

DOI:

https://doi.org/10.3989/scimar.2010.74n1147

Keywords:

habitat complexity, epibenthic hard-bottom communities, succession, Peninsula Mejillones, Humboldt Current System

Abstract


The biodiversity of hard-bottom substrata comprises species growing on exposed rock and in hidden microhabitats, such as cracks and crevices. This study examines the succession of epibenthic organisms colonizing an artificial substratum with one surface exposed and one surface hidden on a vertical wall off northern Chile. On each sampling date species coverage of three replicate panels on both surfaces was assessed. The hidden surface was dominated in terms of coverage by the bryozoans Membranipora isabelleana and Lagenicella variabilis, while algae were absent. In contrast, the exposed surface was dominated by encrusting red corallines and the red alga Rhodymenia corallina. At the end of the experimental period both surfaces were dominated by colonial suspension feeders, but showed a different community structure and successional pattern. On the exposed surface, competitive exclusion was identified as an important aspect of succession, whereas on the hidden surface this pattern was not observed. These findings have implications for overall biodiversity, because pioneer species that are not able to survive long periods on exposed surfaces become restricted to hidden surfaces, from where they spread laterally. Thus, hidden microhabitats provide refuges for certain species, and may play an important role in the overall succession on rock faces. We conclude that examination of hidden microhabitats is necessary in order to fully understand succession in hard-bottom habitats.

Downloads

Download data is not yet available.

Author Biographies

Aldo S. Pacheco, Alfred Wegener Institute for Polar and Marine Research

Facultad de Recursos del Mar, Universidad de Antofagasta, Chile

Jürgen Laudien, Alfred Wegener Institute for Polar and Marine Research

Institute for Applied Ecology Ltd, D-18184 Broderstorf, Germany

Martin Thiel, Facultad de Ciencias del Mar, Universidad Católica del Norte

Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile

References

Barnes, H. and W. Klepal. – 1972. Phototaxis in stage Inauplius larvae of two cirripedes. J. Exp. Mar. Biol. Ecol., 10: 267-273. doi:10.1016/0022-0981(72)90076-7

Baynes, T.W. – 1999. Factors structuring a subtidal encrusting community in the southern Gulf of California. Bull. Mar. Sci., 64: 419-450.

Bourget, E., J. De Guise and G. Daigle. – 1994. Scales of substratum heterogeneity, structural complexity, and the early establishment of a marine epibenthic community. J. Exp. Mar. Biol. Ecol., 181: 31-51. doi:10.1016/0022-0981(94)90102-3

Burnaford, J.L. – 2004. Habitat modification and refuge from sublethal stress drive a marine plant-herbivore association. Ecology, 85: 2837-2849. doi:10.1890/03-0113

Chaparro, O.R., I. Bahamondes-Rojas, A.M. Vergara and A.A. Rivera. – 1998. Histological characteristics of the foot and locomotory activity of Crepidula dilatata Lamarck (Gatropoda: Calyptreidae) in relation to sex changes. J. Exp. Mar. Biol. Ecol., 223: 77-91. doi:10.1016/S0022-0981(97)00151-2

Chaparro, O.R., C.J. Segura, R.J. Navarro and R.J. Thompson. – 2004. The effect of food supply on feeding strategy in sessile female grastropods Crepidula fecunda. Mar. Biol., 144: 79-87. doi:10.1007/s00227-003-1176-7

Cifuentes, M., C. Kamlah, M. Thiel, M. Lenz and M. Wahl. – 2007. Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J. Exp. Mar. Biol. Ecol., 352: 280-294. doi:10.1016/j.jembe.2007.08.004

Clarke, K.R. – 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol., 18: 117-143. doi:10.1111/j.1442-9993.1993.tb00438.x

Clarke, K.R. and R.N. Gorley. – 2006. PRIMERv6: User Manual/Tutorial, PRIMER-E: Plymouth.

Connell, J.H. – 1985. The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J. Exp. Mar. Biol. Ecol., 93: 11-45. doi:10.1016/0022-0981(85)90146-7

Connell, S.D. – 2005. Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar. Ecol. Prog. Ser., 289: 53-61. doi:10.3354/meps289053

Coyer, J.A., R.F. Ambrose, J.M. Engle and J.C. Carrol. – 1993. Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. J. Exp. Mar. Biol. Ecol., 167: 21-37. doi:10.1016/0022-0981(93)90181-M

Dexter, S.C. and K.E. Lucas. – 1985. The study of biofilm formation under water by photoacoustic spectroscopy. J. Colloid. Interf. Sci., 104: 15-27. doi:10.1016/0021-9797(85)90005-0

Duggins, O.D., J.E. Eckman and A.T. Sewell. – 1999. Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates. J. Exp. Mar. Biol. Ecol., 143: 27-45. doi:10.1016/0022-0981(90)90109-P

Escribano, R., V. Marín, P. Hidalgo and G. Olivares. – 2002. Physical-biological interactions in the pelagic ecosystem of the nearshore zone of the northern Humboldt Current System. In: J.C. Castilla and J. Largier (eds.), The Oceanography and Ecology of the Nearshore Bays in Chile. Proceedings of the International Symposium on Linkages and Dynamics of Coastal Systems: Open Coast and Embayments, pp: 145-175. Eds. Univ. Católica Chile, Santiago.

Gallardo, C. – 1977. Two modes of development in the morphospecies Crepidula dilatata (Gastropoda: Calyptraeidae) from Southern Chile. Mar. Biol., 39: 241-251. doi:10.1007/BF00390998

Glasby, T.M. – 1999a. Effects of shading on subtidal epibiotic assemblages. J. Exp. Mar. Biol. Ecol., 234: 275-290. doi:10.1016/S0022-0981(98)00156-7

Glasby, T.M. – 1999b. Interactive effects of shading and proximity to the seafloor on the development of subtidal epibiotic assemblages. Mar. Ecol. Prog. Ser., 190: 113-124. doi:10.3354/meps190113

Glasby, T.M. – 2000. Surface composition and orientation interact to affect subtidal epibiota. J. Exp. Mar. Biol. Ecol., 248: 177-190. doi:10.1016/S0022-0981(00)00169-6 PMid:10771301

Glasby, T.M. and S.D. Connell. – 2001. Orientation and position of substrata have large effects on epibiotic assemblages. Mar. Ecol. Prog. Ser., 214: 127-135. doi:10.3354/meps214127

Irving, A.D. and S.D. Connell. – 2002. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Mar. Ecol. Prog. Ser., 245: 83-91. doi:10.3354/meps245083

Jackson, J.B.C. – 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat., 111: 743-767. doi:10.1086/283203

Matsumura, K., J.M. Hill, P.O. Thomason, J.C. Thomason and A.S. Clare. – 2000. Discrimination at settlement in barnacles: laboratory and field experiments on settlement behaviour in responses to settlement-inducing protein complexes. Biofouling, 16: 181-190. doi:10.1080/08927010009378443

Melville, A.J. and S.D. Connell. – 2001. Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecol., 26: 102-108. doi:10.1046/j.1442-9993.2001.01089.x

Miller, R.J. and R. Etter. – 2008. Shading facilitates sessile invertebrate dominance in the rocky subtidal Gulf of Maine. Ecology, 89: 452-462. doi:10.1890/06-1099.1 PMid:18409434

Navarro, J.M. and O.R. Chaparro. – 2002. Grazing-filtration as feeding mechanisms in motile specimens of Crepidula fecunda (Gastropoda: Calyptraeidae). J. Exp. Mar. Biol. Ecol., 270: 111-122. doi:10.1016/S0022-0981(02)00013-8

Navarrete, S.A. and J.C. Castilla. – 2003. Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 100: 251-262. doi:10.1034/j.1600-0706.2003.11996.x

Navarrete, S.A., M. Parragué and E.A. Wieters. – 2008. Local and meso-scale patterns of recruitment and abundance of two intertidal species that compete for refuges. Mar. Biol., 155: 223-232. doi:10.1007/s00227-008-1021-0

Pacheco, A. and J. Laudien. – 2008. Dendropoma mejillonensis sp. nov. new species of vermetid (Mollusca, Caenogastropoda) from northern Chile. The Veliger, 50: 219-224.

Raimondi, P.T. and A.N.C. Morse. – 2000. The consequences of complex larval behaviour in a coral. Ecology, 81: 3193-3211.

Richter, C., M. Wunsch, M. Rasheed, I. Kötter and M. Badran. – 2001. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature, 413: 726-730. doi:10.1038/35099547 PMid:11607030

Rodríguez, S.D., F.P. Ojeda and N.C. Inestrosa. – 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser., 97: 193-207. doi:10.3354/meps097193

Roleda, M.Y., C. Wiencke, D. Hanelt and K. Bischof. – 2007. Sensitivity of the early life stages of macroalgae from the northern hemisphere to ultraviolet radiation. Photochem. Photobiol., 83: 851-862.

Sebens, K.P. – 1986. Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol. Monogr., 56: 73-96. doi:10.2307/2937271

Siddon, C.E. and J.D. Witman. – 2004. Behavioral indirect interactions: multiple predator effects and prey switching in the rocky subtidal. Ecology, 85: 2938-2945. doi:10.1890/03-0519

Sommer, U., B. Meusel and C. Stielau. – 1999. An experimental analysis of the importance of body-size in the seastar-mussel predator-prey relationship. Acta Oecol., 20: 81-86. doi:10.1016/S1146-609X(99)80019-8

Teixidó, N., J. Garrabou, J. Gutt and W. Arntz. – 2007. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems, 10: 142-157.

Underwood, A.J. and M.G. Chapman. – 2006. Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization. J. Exp. Mar. Biol. Ecol., 330: 221-233. doi:10.1016/j.jembe.2005.12.029

Valdivia, N., A. Heidemann, M. Thiel, M. Molis and M. Wahl. – 2005. Effects of disturbance on the diversity of hard-bottom macrobenthic communities on the coast of Chile. Mar. Ecol. Prog. Ser., 299: 45-54. doi:10.3354/meps299045

Villegas, M.J., J. Laudien, W. Sielfeld and W.E. Arntz. – 2008. Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitats structures and associated macrobenthic community off northern Chile. Helgoland Mar. Res., 62 (Suppl 1): 33-43. doi:10.1007/s10152-007-0096-1

Witman, J.D. and P.K. Dayton. – 2001. Rocky subtidal communities. In: M.D. Bertness, S.D. Gaines and M.E. Hay (eds.) Marine Community Ecology, pp: 339-366. Sinauer Associates Inc, Sunderland, Massachusetts.

Yund, P.O., S.D. Gaines and M.D. Bertness. – 1991. Cylindrical tube traps for larval sampling. Limnol. Oceanogr., 36: 1167-1177.

Downloads

Published

2010-03-30

How to Cite

1.
Pacheco AS, Laudien J, Thiel M, Heilmayer O, Oliva M. Hard-bottom succession of subtidal epibenthic communities colonizing hidden and exposed surfaces off northern Chile. Sci. mar. [Internet]. 2010Mar.30 [cited 2024Mar.28];74(1):147-54. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1137

Issue

Section

Articles