Scientia Marina, Vol 74, No 1 (2010)

Population identification of common cuttlefish (Sepia officinalis) inferred from genetic, morphometric and cuttlebone chemistry data in the NE Mediterranean Sea

Cemal Turan
Fisheries Genetics Laboratory, Department of Basic Sciences, Faculty of Fisheries, Mustafa Kemal University, Turkey

Deniz Yaglioglu
Fisheries Genetics Laboratory, Department of Basic Sciences, Faculty of Fisheries, Mustafa Kemal University, Turkey


The population structures of the common cuttlefish Sepia officinalis from the north-eastern Mediterranean (Antalya and Iskenderun Bays), Aegean (Izmir Bay) and Marmara Seas were analyzed with mtDNA PCR-RFLP, body morphometry and cuttlebone chemistry. Analysis of a ND 5/6 (Nikotin Amid Adenin Dehidrojenaz-5/6) gene segment of mtDNA revealed seven haplotypes from 120 individuals. No haplotype sharing was observed among sampling sites. The average nucleotide divergence between samples was 0.009390, and the highest genetic divergence (0.015279) was observed between the Iskenderun Bay and Marmara Sea samples. The lowest genetic divergence (0.003786) was between the Aegean Sea and Antalya Bay samples. Highly significant differences (P<0.001) between all sampling sites were observed in both the Monte Carlo and AMOVA analyses. In the UPGM tree, the neighbouring Antalya and Aegean samples clustered as the closest clades, and the most isolated Marmara and Iskenderun Bay samples clustered as the most divergent clades. In discriminant function analysis, the classification success rates in assigning fishes to the correct region of origin were 66 and 100% for morphometry and cuttlebone chemistry respectively. In the morphometric analysis, only the Marmara Sea and Iskenderun Bay samples were differentiated from each other, and the rest of the samples overlapped each other. In cuttlebone chemistry analysis, univariate statistics revealed highly significant (P<0.001) differences among locations for 12 elements: Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Zn. In multivariate analysis, highly significant differences (P<0.001) were observed between the four locations. This study showed that there are four discrete populations of S. officinalis in Turkish coastal waters.


Sepia officinalis; population identification; genetic; morphometry; cuttlebone chemistry

Full Text:



Avise, J.C. – 1994 Molecular Markers, Natural History and Evolution, Chapman and Hall, New York. 511pp.

Ballard, J.W.O. and M. Kreitman. – 1995. Is mitochondrial DNAa strictly neutral marker? Trends Ecol. Evol., 10: 485-488. doi:10.1016/S0169-5347(00)89195-8

Besiktepe, S., E. Ozsoy and U. Unluata. – 1993. Filling of the Marmara Sea by the Dardanelles Lower Layer Inflow. Deep-Sea Res., 40: 1815-1838. doi:10.1016/0967-0637(93)90034-Z

Boletzky, S.V. – 1983. Sepia officinalis, In: P.R. Boyle (ed.), Cephalopod Life Cycles: Species Accounts, Vol. I, pp. 31-52. Academic Press, London.

Campana, S.E. – 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188: 263-297 doi:10.3354/meps188263

Campana, S.E., A.J. Fowleii and C.M. Jones. – 1994. Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can. J. Fish. Aquat. Sci., 51: 1942-1950. doi:10.1139/f94-196

Carvalho, G.R. and L. Hauser. – 1994. Molecular-genetics and the stock concept in fisheries. Rev. Fish. Biol. Fish., 4: 326-350. doi:10.1007/BF00042908

Duysak, Ö., C. Türeli and Ü. Erdem. – 2004. Fauna of Cephalopods in Akkuyu (Eastern Mediterranean-Mersin, Turkey). Turk. J. Aqu. Lif., 2: 181-192.

Elliott, S.R., P. Beiersdorfer, B.J. McGowan and J. Nilsen. – 1995. Measurements of line overlap for resonant spoiling of x-ray lasing transitions in nickellike tungsten. Physical Rev., 52: 2689-2692. doi:10.1103/PhysRevA.52.2689 PMid:9912550

Excoffier, L.G. and L. Schneider, S. – 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online, 1: 47-50.

FAO. – 2003. Cephalopods commodity update. Available from

Grant, W.S. and B.W. Bowen. – 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from the sardines and anchovies and lessons for conservation. J. Hered., 89: 415-426. doi:10.1093/jhered/89.5.415

Guerra, A. – 1992. Mollusca, Cephalopoda. In: M.A. Ramos et al. (eds.), Fauna Ibérica, Vol. 1. Museo Nacional de Ciencias Naturales (CSIC), Madrid.

Hauser, L., C. Turan and G.R. Carvalho. – 2001. Haplotype Frequency Distribution and Discriminatory Power of Two mtDNAFragments in a Marine Pelagic Teleost (Atlantic herring, Clupea harengus). Heredity, 87: 1-10. doi:10.1046/j.1365-2540.2001.00956.x PMid:11903557

Kassahn, K.S., S.C. Donnellan, A.J. Fowler, K.C. Hall, M. Adams and P.W. Shaw. – 2003. Molecular and morphological analyses of the cuttlefish Sepia apama indicate a complex population structure. Mar. Biol., 143: 947-962. doi:10.1007/s00227-003-1141-5

Lleonart, J., J. Salat, and G.J. Torres. – 2000. Removing allometric effects of body size and allometry in morphological analysis. J. Theor. Biol., 205: 85-93. doi:10.1006/jtbi.2000.2043 PMid:10860702

Lombarte, A. and J. Lleonart. – 1993. Otolith size changes with body growth, habitat depth and temperature. Environ. Biol. Fish., 37: 297-306. doi:10.1007/BF00004637

McElroy, D., P. Moran, E. Bermingham and J. Kornfield. – 1991. Reap: The restriction enzyme analysis package, version 4.0. Department of Zoology, University of Maine, Orono, ME.

Moore, G.A. – 1950. The cutaneous sense organs of barbeled minnows adapted to life in the waters of the Great Plains region. Trans. Am. Microsc. Soc., 519: 69-95. doi:10.2307/3223350

Nei, M. and F. Tajima. – 1981. DNApolymorphism detectable by restriction endonucleases. Genetics, 97: 145-163.

Ozsoy, E., M.A. Latif, H.I. Sur and Y. Goryachkin. – 1996. AReview of the Exchange Flow Regimes and Mixing in the Bosphorus Strait. In: F. Briand, (ed.), Mediterranean Tributary Seas, Bull. Inst. Océanogr., Monaco, Special Number 17, CIESMSci. Ser., 2, Monaco.

Perez-Losada, M., A. Guerra and A. Sanjuan. – 1999. Allozyme differentiation in the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) from the NEAtlantic and Mediterranean. Heredity, 83: 280-289. doi:10.1038/sj.hdy.6885520 PMid:10504425

Perez-Losada, M., A. Guerra, G.R. Carvalho, A. Sanjuan and P.W. Shaw. – 2002. Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNAvariation. Heredity, 89: 417-424. doi:10.1038/sj.hdy.6800160 PMid:12466983

Perrin, A., E. LeBihan and N. Koueta. – 2004. Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). J. Exp. Mar. Biol. Ecol., 311: 267-285. doi:10.1016/j.jembe.2004.05.012

Roff, D.A. and P. Bentzen. – 1989. The statistical analysis of mitochondrial DNApolymorphisms: 2 and the problem of small samples. Mol. Biol. Evol., 6: 539-545.

Rogers, A. R. and H. Harpending. – 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552-569.

Salman, A. and T. Katag˘an. – 2004. Türkiye Denizlerindeki Kafadanbacaklıların (Cephalopoda) Av Verimleri 1. Ulusal Malakoloji Kongresi 1-3 Eylül 2004 Izmir–Türkiye. Türk Sucul Yas¸am Dergisi, 2(Suppl. 2): 25-32.

Salman, A., T. Katag˘an and H.A. Benli. – 1997. Bottom trawl teuthofauna of the Aegean Sea. Arch. Fish. Mar. Res., 45(Suppl. 2): 183-196.

Sambrook, J., E.F. Fritsch and T. Maniatis. – 1989. Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Shaw, P.W., G.J. Pierce and P.R. Boyle – 1999. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNAmarkers. Mol. Ecol., 8: 407-417. doi:10.1046/j.1365-294X.1999.00588.x

Sneath P.H.A. and R.R. Sokal – 1973. Numerical Taxonomy. W.H. Freeman, San Francisco.

Tegelstrom, H. – 1987. Genetic variability in mitochondrial DNAin a regional population of the Great Tit (Pagrus major). Biochemical Genetics. 25: 95-110. doi:10.1007/BF00498954 PMid:3034235

Turan, C., M. Oral., B. Öztürk and E. Düzgünes¸. – 2006. Morphometric and Meristic Variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and Northeastern Mediterranean Seas. Fish. Res., 79: 139-147. doi:10.1016/j.fishres.2006.01.015

Turan, C. – 2006. The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). J. Fish. Biol., (Suppl. C) 69: 165-180. doi:10.1111/j.1095-8649.2006.01266.x

Turan C., B.Ozturk, M. Gurlek and D. Yaglioglu. – 2009. Genetic differentiation of Mediterranean horse mackerel (Trachurus mediterraneus) populations as revealed by mtDNAPCR-RFLP analysis. J. Appl. Ichthyol., 25: 142-147. doi:10.1111/j.1439-0426.2009.01223.x

Volpedo, A.V. and A.F. Cirelli. – 2006. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Sci. Mar., 70(Suppl. 2): 325-334.

Ward, R.D., M. Woodwark and D.O.F. Skibinski – 1994. Acomparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J. Fish. Biol. 44: 213-232. doi:10.1111/j.1095-8649.1994.tb01200.x

Wolfram, K., F.C. Mark, U. John, M. Lucassen and H.O. Portner. – 2006. Microsatellite DNAvariation indicates low levels of genetic differentiation among cuttlefish (Sepia officinalis L.) populations in the English Channel and the Bay of Biscay. Comp. Biochem. Physiol. D., 1: 375-383.

Yazkan, M., F. Özdemir and M. Gölükcü. – 2004. Antalya Körfezinde Avlanan Bazı Yumus¸akçalar ve Karideste Cu, Zn, Pb ve Cd içerig˘i. Turk. J. Vet. Anim. Sci., 28: 95-100.

Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support