Scientia Marina, Vol 73, No S1 (2009)

Effects of cortisol and salinity acclimation on Na+/K+/2Cl- cotransporter gene expression and Na+, K+-ATPase activity in the gill of Persian sturgeon, Acipenser persicus, fry

Saber Khodabandeh
Marine biology Group, Faculty of Marine Science Tarbiat Modares University, Iran, Islamic Republic of

Saeedeh Mosafer
Marine biology Group, Faculty of Marine Science Tarbiat Modares University, Iran, Islamic Republic of

Zahra Khoshnood
Marine biology Group, Faculty of Marine Science Tarbiat Modares University, Iran, Islamic Republic of


Na+, K+-ATPase activity and Na+/K+/2Cl- cotransporter (NKCC) gene expression in the gills of Persian sturgeon, Acipenser persicus, fry (2-3 g, 3.30-8.12 cm total body length) in freshwater (control group), diluted Caspian Sea water (5 ppt) and after treatment with cortisol in freshwater were studied. Na+, K+-ATPase activity was lower in the 5 ppt-acclimated fish (1.07±0.05 _mol Pi/mg protein/h) than in the control fish (1.19±0.05 μmol Pi/mg protein/h) but this difference was not significant. nKCC gene expression in the 5 ppt-acclimated fish (1.6±0.07) was significantly higher than in the control fish (0.8±0.00). In the cortisol treated fish, Na+, K+-ATPase activity (1.91±0.05 μmol Pi/mg protein/h) and NKCC gene expression (3.2±0.1) were significantly higher than in the control group. our results show that Persian sturgeon fry (2-3 g) can tolerate 5 ppt salinity by changing their enzymatic content and activity, and that exogenous cortisol application can increase the osmoregulatory capacity of fry before release into brackish water and can reduce their mortality.


cortisol; na<sub>+</sub>; K<sub>+</sub>-aTPase; NKCC; Persian sturgeon; salinity

Full Text:



Bachmann, S.M. Bostanjoglo, R. Schmitt and D.H. Ellison. – 1999. Sodium transport-related proteins in the mammalian distal nephron distribution, ontogeny and functional aspects. Anatomy and Embryology, 200: 447-468. doi:10.1007/s004290050294 PMid:10526014

Bern, H.A. and S.S. Madsen. – 1992. A selective survey of the endocrine system of the rainbow trout (Oncorhynchus mykiss) with emphasis on the hormonal regulation of ion balance. Aquaculture, 100: 237–262. doi:10.1016/0044-8486(92)90384-W

Cutler, C.P. and G. Cramb. – 2002. Two isoforms of the Na+/K+/2Cl– cotransporter are expressed in the European eel (Anguilla anguilla). Bioch. Biophys. Acta, 1566: 92-103. doi:10.1016/S0005-2736(02)00596-5

Evans, D.H. – 1993. Osmotic and ionic regulation. In: D.H. Evans (ed.), The Physiology of Fishes, pp. 315-342. CRC Press, Boca Raton.

Evans, D.H., P.M. Piermarini and K.P. Choe. – 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous waste. Phys. Rev., 85: 97-177. doi:10.1152/physrev.00050.2003 PMid:15618479

Frost, P. and F. Nilsen. – 2003. Validation of reference genes for transcription profiling in the salmon louse, Lepeophtheirus salmonis, by quantitative realtime PCR. Veterinarian Parasitology, 118: 168-174.

Gagnon, E., B. Forbush, L. Caron and P. Isenring. – 2003. Functional comparison of renal Na-K-Cl cotransporters between distant species. Am. J. Phys., 284: C365-C370.

Haas, M. – 1994. The Na-K-Cl cotransporters. Am. J. Phys., 267: C869-C885.

Hiroi, J., S.D. McCormick, R. Ohtani-Kaneko and T. Kaneko. – 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+,K+-ATPase, Na+/ K+/ 2Cl- cotransporter and CFTR anion channel. J. Exp. Biol., 208: 2023-2036. doi:10.1242/jeb.01611 PMid:15914646

Hiroi, J. and S.D. McCormick. – 2007. Variation in salinity tolerance, gill Na+,K+-ATPase, Na+/ K+/ 2Cl- cotransporter and mitochondrion- rich cells distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J. Exp. Biol., 210: 1015-1024. doi:10.1242/jeb.002030 PMid:17337714

Hirose, S., T. Kaneko, N. Naito and Y. Takei. – 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Phys., 136B: 593-620.

IUCN. 1996. The 1996 red list of threatened animals. IUCN, Gland, Switzerland, 365-369.

Jarvis, P.L. and J.S. Ballantyne. – 2003. Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture, 219: 891-909. doi:10.1016/S0044-8486(03)00063-2

Khoabandeh, S., Z. Khoshnood and S. Mosafer. – 2009. Immunolocalization of Na+, K+-ATPase-rich Cells in the Gill and Urinary System of Persian Sturgeon, Acipenser persicus, fry in freshwater. Aquaculture Res., 40: 329-336. doi:10.1111/j.1365-2109.2008.02097.x

Kiilerich, P., K. Kristiansen and S.S. Madsen. – 2007. Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J. Endocr., 194: 417-427. doi:10.1677/JOE-07-0185 PMid:17641289

Kultz, D. – 2001. Cellular osmoregulation: beyond ion transport and cell volume. Zoology, 104: 198-208. doi:10.1078/0944-2006-00025 PMid:16351834

Laurent, P. and S.F. Perry. – 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res., 259: 429-442. doi:10.1007/BF01740769

Lin, C.H., R.S. Tsai and T.H. Lee. – 2004. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol., Part A138: 287-295.

Lorin-Nebel, C., V. Boulo, C. Bodinier and G. Charmantier. – 2006. The Na+, K+, 2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J. Exp. Biol., 209: 4908-4922. doi:10.1242/jeb.02591 PMid:17142680

Lowry, O.H., N.J. Rosebrough, A.A.L. Farr and R.J. Randall. – 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265-275.

Lytle, C., J. Xu, D. Biemensderfer and B. Forbush. – 1995. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Phys., 269: C1496-C1505.

Madsen, S.S. – 1990a. The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen. Comp. Endocr., 79: 1-11. doi:10.1016/0016-6480(90)90082-W PMid:2162306

Madsen, S.S. – 1990b. Effect of repetitive cortisol and thyroxine injections on chloride cell number and Na+/K+-ATPase activity in gills of freshwater acclimated rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol., Part A. 95: 171-175.

Mancera, J.M., R.L. Carrion and M.P. Martin del Rio. – 2002. Osmoregulatory action of PRL, GH and Cortisol in the Gilthead Sea bream (Sparus aurata L.). Gen. Comp. Endocr., 129: 95-103. doi:10.1016/S0016-6480(02)00522-1 PMid:12441119

McCormick, S.D. – 1995. Hormonal control of gill Na1, K1–ATPase and chloride cell function. In: C.M. Wood and T.J. Shuttleworth (eds.), Fish Physiology, pp. 285-315. “Ionoregulation: Cellular and Molecular Approaches”, Academic Press, New York.

McCormick, S.D. – 1990. Fluorescent labelling of Na+, K+-ATPase in intact cell by use of fluorescent derivative of ouabain: Salinity and teleost chloride cells. Cell Tissue Res., 260: 529-553. doi:10.1007/BF00297233 PMid:2164884

Mckenzie, D.J., E. Cataldi, P. Di Marco, A. Mandlich, P. Romano, S. Ansferri, P. Bronzi and S. Cataudella. – 1999. Some aspects of osmotic and ionic regulation in Adriatic sturgeon Acipenser naccarii: II: Morpho-Physiological adjustments to hyperosmotic environments. Applied Ichthyol., 15: 61-66. doi:10.1111/j.1439-0426.1999.tb00208.x

Norby, J.G. – 1998. Coupled assay of Na+, K+-ATPase activity. Methods in Enzymology, 156: 116-119. doi:10.1016/0076-6879(88)56014-7

Pelis, R.M. and S.D. McCormick. – 2001. Effects of Growth hormone and Cortisol on Na+, K+-2Cl- cotransporter localisation and abundance in the gills of Atlantic salmon. Gen. Comp. Endocr., 124: 134-143. doi:10.1006/gcen.2001.7703 PMid:11703079

Pickford, G.E., P.K. Pang, E. Weinstein, J. Torretti, E. Hendler and F.H. Epstein. – 1970. The response of the hypophysectomized cyprinodont, Fundulus heteroclitus, to replacement therapy with cortisol: Effects on blood serum and sodium – potassium -activated adenosine triphosphatase in the gills, kidney, and intestinal mucosa. Gen. Comp. Endocr., 14: 524-534. doi:10.1016/0016-6480(70)90036-5 PMid:4246419

Rodriguez, A.E. Gisbert, M.A. Gallardo, S. Santilari, A. Ibarz, J. Sanchez and F. Castello-Orvay. – 2003. Osmoregulation en el esturion siberiano juvenile (Acipenser baerii). Proc. IX congr. Nac. Acuic., Cádiz (Spain): 111-112.

Russell, J.M. – 2000. Sodium-potassium-chloride cotransport. Physiol. Rev., 80: 211-276.

Scott, G.R., J.B. Claiborne, S.L. Edwards, P.M. Schulte and C.M. Wood. – 2004. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J. Exp. Biol., 208: 2719-2729. doi:10.1242/jeb.01688 PMid:16000541

Scott, G.R. and P.M. Schult. – 2005. Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp. Biochem. Physiol., Part A. 141: 176-182.

Seidelin, M. S.S. Madsen, A. Bryialsen and K. Kristiansen. – 1999. Effects of insulin-like growth factor-I and cortisol on Na+, K+- ATPase expression in osmoregulatory tissues of Brown trout, Salmo trutta. Gen. Comp. Endocr., 113: 331-342. doi:10.1006/gcen.1998.7225 PMid:10068495

Shrimpton, J.M. and S.D. McCormick. – 1999. Responsiveness of gill Na+, K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J. Exp. Biol., 202: 987-995.

Singer, T.D., B. Finstad, S.D. McCormik, S.B. Wiseman, P.M. Schulte and R.S. McKinley. – 2003. Interactive effects of cortisol treatment and ambient seawater challenge on gill Na, KATPase and CFTR expression in two strains of Atlantic salmon smolts. Aquaculture, 222: 15-28. doi:10.1016/S0044-8486(03)00099-1

Tipsmark, C.K., S.S. Madsen, M. Seidelin, A.S. Christensen, C.P. Cutler and G. Cramb. – 2002. Dynamics of Na+/ K+/ 2Clcotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J. Exp. Zool., 293: 106-118. doi:10.1002/jez.10118 PMid:12115907

Tse, W.K.F. and C.K.C. Wong. – 2006. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem. Biophys. Res. Comm., 346: 1181-1190. doi:10.1016/j.bbrc.2006.06.028 PMid:16793006

Wong, C.K.C. and D.K.O. Chan. – 2001. Effects of Cortisol on chloride cells in the gill epithelium of Japanese eel, Anguilla japonica. Endocrinology, 168: 185-192. doi:10.1677/joe.0.1680185 PMid:11139782

Wood, C.M. and W.S. Marshall. – 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus an euryhaline estuarine teleosts. Estuaries, 17: 34-52. doi:10.2307/1352333

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support