Scientia Marina, Vol 73, No S1 (2009)

The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider)

Christoph Petereit
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Germany

Hans Harald Hinrichsen
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Germany

Rüdiger Voss
Sustainable Fisheries, Department of Economics, University of Kiel, Germany

Gerd Kraus
Institute of Sea Fisheries, Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Germany

Marko Freese
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Germany

Catriona Clemmesen
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Germany


The small pelagic sprat (Sprattus sprattus) is a key ecologic player in the Baltic Sea. However, there is long-term variability in recruitment which is thought to be influenced by fluctuations in abiotic and biotic conditions experienced during the early life stages. This study concentrates on the influence of different ambient salinities on sprat egg development, egg buoyancy and survival as well as early yolk sac larval morphometric traits. Egg buoyancy significantly decreased with increasing salinity experienced during fertilization and/or incubation experiments. Field egg buoyancy measurements in 2007 and 2008 exhibited annual and seasonal differences in specific gravity, potentially associated with changes in adult sprat vertical distribution. Neither egg development time nor the duration of the yolk sac phase differed among salinity treatments. At eye pigmentation, larval standard length exhibited high variance among individuals but did not differ among treatments. The largest ecological impact of salinity experienced during spawning was the modification the buoyancy of eggs and yolk sac larvae, which determines their vertical habitat in the Baltic Sea. There are strong thermo- and oxyclines in the Baltic Sea, and thus salinity can indirectly impact the survival of these early life stages by modifying the ambient temperatures and oxygen conditions experienced.


clupeids; vertical distribution; specific gravity; drift; recruitment; spawning stock; adult fish

Full Text:



Alderdice, D.F. – 1988. Osmotic and Ionic Regulation in Teleost Eggs and Larvae. In: W.S. Hoar and D.J. Randall (eds.), Fish Physiology XI - The Physiology of Developing Fish - Part A - Eggs and Larvae, pp. 163-252. Academic Press, London.

Alekseev, F.E. and E.I. Alekseeva. – 2005. Batch fecundity and daily egg production of the Baltic sprat (Sprattus sprattus balticus (Clupeidae)) from the southeastern part of the Baltic Sea. J. Ichthyol., 45(1): 93-102.

Aro, E. – 1989. A review of fish migration patterns in the Baltic Sea. Rapp. P.-v. Réun. Cons. Int. Explor. Mer, 190: 72-96.

BALTEX. – 2006. Assessment of Climate Change for the Baltic Sea basin. Summary. The BACC Lead Author Group (eds.), International BALTEX Secretariat, 35: 1-26.

Coombs, S.H. – 1981. A density-gradient column for determining the specific gravity of fish eggs, with particular reference to eggs from the mackerel Scomber scombrus. Mar. Biol., 63: 101-106. doi:10.1007/BF00394667

Coombs, S.H., C.A. Fosh and M.A. Keen. – 1985. The buoyancy and vertical distribution of eggs of sprat (Sprattus sprattus) and pilchard (Sardina pilchardus). J. Mar. Biol. Assoc. UK, 65: 461-474. doi:10.1017/S0025315400050542

Craik, J.C.A. and S.M. Harvey. – 1987. The causes of buoyancy in eggs of marine teleosts. J. Mar. Biol. Assoc. UK, 67: 169-182. doi:10.1017/S0025315400026436

Fabra, M., D. Raldúa, D.M. Power, P.M. Deen and J. Cerdà – 2005. Marine fish egg hydration is aquaporine-mediated. Science, 307: 545. doi:10.1126/science.1106305 PMid:15681377

Fofonoff, P. and R.C. Millard Jr. – 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci., 44: 53 pp.

Goarant, A., P. Petitgas and P. Bourriau – 2007. Anchovy (Engraulis encrasicolus) egg density measurements in the Bay of Biscay: evidence for the spatial variation in egg density with sea surface salinity. Mar. Biol., 151(5): 1907-1915. doi:10.1007/s00227-007-0624-1

Govoni, J.J. and R.B. Forward Jr. – 2008. Buoyancy. In: R.N. Finn and B.G. Kapoor (eds.), Fish Larval Physiology, pp. 495-521. Science Publishers, Enfield USA.

Grauman, G.B. and E. Yula. – 1989. The importance of abiotic and biotic factors in early ontogenesis of cod and sprat. Rapp. P.-v. Réun. Cons. Int. Explor. Mer, 190: 207-210.

Harjes, A. – 2008. Saisonaler Einfluss abiotischer und biotischer Faktoren auf den Überlebenserfolg von Fischbrut im Bornholmbecken. Staatsexamen thesis, Univ. Kiel.

Haslob, H., C. Clemmesen, M. Schaber, H.-H. Hinrichsen, J.O. Schmidt, R. Voss, G. Kraus and F.W. Köster. – 2007. Invading Mnemiopsis leidyi as a potential threat to Baltic fish. Mar. Ecol. Prog. Ser., 349: 303-306. doi:10.3354/meps07283

Hempel, G. – 1979. Early life history of marine fish. The Egg Stage, pp 1-70. University of Washington Press, Seattle Washington.

Hohendorf, K. – 1968. Zur Schwebfähigkeit pelagischer Fischeier in der Ostsee-vorläufige Mitteilung. Ber. Dt. Wiss. Komm. Meeresforsch., 3: 181-193.

Holliday, F.G.T. and J.H.S. Blaxter – 1960. The effect of salinity on the developing eggs and larvae of the herring. J. Mar. Biol. Assoc. UK, 39: 591-603. doi:10.1017/S0025315400013564

Jacobsen, J.P. and A.C. Johansen – 1908. Remarks on the changes in specific gravity of pelagic fish eggs and the transportation of same in Danish waters. Medd. Kom. Dan. Fisk Havunders. Fisk, 3(2): 1-24.

Kamler, E. – 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Rev. Fish. Biol. Fish., 12: 79-103. doi:10.1023/A:1022603204337

Kändler, R. – 1941. Die Fortplanzung der Meeresfische in der Ostsee und ihre Beziehungen zum Fischereiertrag. Monatshefte f. Fischerei, 11: 158-163.

Kändler, R. and E.O. Tan – 1965. Investigation on the osmoregulation in pelagic eggs of gadoid and flatfishes in the Baltic. Part 1: Changes in volume and specific gravity at different salinities. Int. Counc. Explor. Sea Comm. Meet. (Baltic-Belt Sea), 43: 1-5.

Köster, F.W., H.-H. Hinrichsen, D. Schnack, M. St. John, B. MacKenzie, J. Tomkiewicz, C. Möllmann, G. Kraus, M. Plikshs, A. Makarchouk and E. Aro. – 2003. Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Sci. Mar., 67(Suppl. 1): 129-154.

Köster, F.W. and C. Möllmann. – 2000. Egg cannibalism in Baltic sprat (Sprattus sprattus L.). Mar. Ecol. Prog. Ser., 196: 269-277. doi:10.3354/meps196269

Laurence, G.C. and W.H. Howell. – 1981. Embryology and influence of temperature and salinity on early development and survival of yellowtail flounder Limanda ferruginea. Mar. Ecol. Prog. Ser., 6: 11-18. doi:10.3354/meps006011

Muus, B.J. and J.G. Nielsen. – 1999. Die Meeresfische Europas in Nordsee, Ostsee und Atlantik. Franchk-Kosmos Verlags-GmbH and Co., Stuttgart.

Nissling, A. – 2004. Effects of temperature on egg and larval survival of cod (Gadus morhua) and sprat (Sprattus sprattus) in the Baltic Sea - implications for stock development. Hydrobiologia, 514: 115-123. doi:10.1023/B:hydr.0000018212.88053.aa

Nissling, A., A. Müller and H.-H. Hinrichsen. – 2003. Specific gravity and vertical distribution of sprat eggs in the Baltic Sea. J. Fish Biol., 63: 280-299. doi:10.1046/j.1095-8649.2003.00139.x

Nissling, A. and L. Westin. – 1997. Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Mar. Ecol. Prog. Ser., 152: 261-271. doi:10.3354/meps152261

Nissling, A. and L. Vallin. – 1996. The ability of Baltic cod eggs to maintain neutral buoyancy and the opportunity for survival in fluctuating conditions in the Baltic Sea. J. Fish Biol., 48: 217-227. doi:10.1111/j.1095-8649.1996.tb01114.x

Nissling, A., H. Kryvi and L. Vallin. – 1994a. Variation in egg buoyancy of Baltic cod (Gadus morhua) and its implications for egg survival in prevailing conditions in the Baltic Sea. Mar. Ecol. Prog. Ser., 110: 67-74. doi:10.3354/meps110067

Nissling, A., P. Solemdal, M. Svensson and L. Westin. – 1994b. Survival, activity and feeding ability of Baltic cod (Gadus morhua) yolk sac larvae at different salinities. J. Fish Biol., 45: 435-445. doi:10.1111/j.1095-8649.1994.tb01326.x

Nissling, A. and L. Westin. – 1991a. Egg mortality and hatching rate of Baltic cod (Gadus morhua) in different salinities. Mar. Biol., 111: 29-32. doi:10.1007/BF01986341

Nissling A. and L. Westin. – 1991b. Egg buoyancy of Baltic cod (Gadus morhua) and its implications for cod stock fluctuations in the Baltic. Mar. Biol., 111: 33-35. doi:10.1007/BF01986342

Parmanne, R., O. Rechlin and B. Sjöstrand. – 1994. Status and future of herring and sprat stocks in the Baltic Sea. Dana, 10: 29-59.

Petereit, C., H. Haslob, G. Kraus and C. Clemmesen. – 2008. The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar. Biol., 154: 295-306. doi:10.1007/s00227-008-0923-1

Ponwith, B.J. and W.H. Neill. – 1995. The influence of incubation salinity on the buoyancy of red drum eggs and yolk sac larvae. J. Fish Biol., 46: 955-960. doi:10.1111/j.1095-8649.1995.tb01400.x

Rohlf, N. – 1999. Verhaltensänderungen der Larven des Ostseedorsches (Gadus morhua callarias) während der Dottersackphase. Ber. Inst. Meereskd. Christian-Albrechts-Univ. Kiel, 312: 1-52.

Sjöblom, V. and R. Parmanne. – 1980. Sprat off the coast of Finland in 1977 and 1978. Ann. Biol., 35: 200-203.

Stepputtis, D. – 2006. Distribution patterns of Baltic sprat (Sprattus sprattus L.) - causes and consequences. Ph.D thesis, Univ. Kiel.

Thompson B.M., S.P. Milligan and J.H. Nichols. – 1981. The development rates of Sprat (Sprattus sprattus L.) eggs over a range of temperatures. ICES CM 1981/H:15.

Thorsen, A., O.S. Kjesbu, H.J. Fyhn and P. Solemdal. – 1996. Physiological mechanisms of buoyancy in eggs from brackish water cod. J. Fish Biol., 48: 457-477. doi:10.1111/j.1095-8649.1996.tb01440.x

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support