Scientia Marina, Vol 73, No 4 (2009)

Comparison of the fatty acid profile of muscle neutral lipids and phospholipids of up-river anadromous sea lamprey (Petromyzon marinus L.) from three Portuguese river basins


https://doi.org/10.3989/scimar.2009.73n4785

Sara Pinela
Center of Oceanography, Faculty of Sciences of the University of Lisbon, Portugal

Bernardo Ruivo Quintella
Center of Oceanography, Faculty of Sciences of the University of Lisbon, Portugal

Pedro Raposo de Almeida
Center of Oceanography, Faculty of Sciences of the University of Lisbon - Department of Biology, School of Sciences and Technology, University of Évora, Portugal

Maria João Lança
Department of Animal Sciences, School of Sciences and Technology, University of Évora - Institute of Mediterranean Agrarian Sciences, University of Évora, Portugal

Abstract


Composition of fatty acid profile of muscle neutral lipids (NL) and phospholipids (PL) of sea lamprey that enter the Portuguese rivers Minho, Tagus and Guadiana during their non-trophic spawning migration was analysed. The fatty acid profile exhibited differences in the percentage among NL and PL and between river basins. Similarities were found in the fatty acid profile of NL. Monounsaturated fatty acids (MUFA) were the most representative, followed by saturated fatty acids (SFA) and finally by polyunsaturated fatty acids (PUFA). Monoenic 16:1 and 18:1ω9 formed a considerable percentage of total fatty acids, followed by SFA 14:0 and 16:0. EPA and DHA were the dominant PUFA fatty acids. In terms of NL, the fatty acid that contributed for the discrimination between the three river basins was 18:1ω7. Individuals from the Minho river basin exhibited a different fatty acid profile of PL characterised by a low PUFA percentage when compared with lampreys from the Tagus and Guadiana river basins. Muscle PL fraction showed that the two monoenes, 16:1 and 18:1ω9, occurred at high percentage, followed by 16:0 and 14:0 (SFA). Among PUFA, DHA was the most representative fatty acid. The fatty acids that contributed to the separation between the three river basins were 16:0, 18:4ω3 and 24:1ω9. Although the results point in the direction of a possible difference between the fatty acid composition of the NL and PL fractions in the muscle samples from the three river basins, further studies, especially in tissues where fatty acid composition will be less sensitive to diet and environmental factors, are necessary to confirm this hypothesis.

Keywords


Petromyzon marinus; fatty acids; spawning migration; Minho; Tagus; Guadiana; Portugal

Full Text:


PDF

References


Ackman, R.G. – 1980. Fish lipids, Part I. In: J. J. Connell (ed.), Advances in Fish Science and Technology, pp. 86-103. Fishing News Books, Farnham Surrey, U.K.

Ackman, R.G. – 1982. Fatty acid composition of fish oils. In: S. M. Barlow and M. E. Stansby (eds.), Nutritional Evaluation of Long-Chain Fatty Acids in Fish Oil, pp. 25-88. Academic Press, London.

Ackman, R.G. – 2002. The gas chromatograph in practical analysis of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta, 465: 175-192. doi:10.1016/S0003-2670(02)00098-3

Ackman, R.G., C.A. Eaton, E.G. Bligh and A.W. Lantz. – 1967. Freshwater fish oils: yields and composition of oils from reduction of sheepshead, tullibee, maria and alewife. J. Fish Res. Board Can., 24: 1219-1227.

Almeida, P.R. and B.R. Quintella. – 2002. Larval habitat of the sea lamprey (Petromyzon marinus L.) in the River Mondego (Portugal). In: M. J. Collares-Pereira, M. M. Coelho, and I. G. Cowx (eds.), Freshwater fish conservation: options for the future, pp. 121-130. Oxford, Blackwell Science, UK.

Almeida, P.R., H. Silva and B.R. Quintella. – 2000. The migratory behavior of the sea lamprey Petromyzon marinus L., observed by acoustic telemetry in the River Mondego (Portugal). In: A. Moore and I. Russell (eds.), Advances in Fish Telemetry, pp. 99-108. Lowestoft: CEFAS, Lowestoft Laboratory, UK.

Ballantyne, J.S., H.C. Glemet, M.E. Chamberlin and T.D. Stinger.– 1993. Plasma nonesterified fatty acids of marine teleosts and elasmobranch fishes. Mar. Biol., 116: 47-52. doi:10.1007/BF00350730

Ballantyne, J.S., F. Mercure, M.F. Gerrits, G. Van Der Kraak, S. McKinley, D.W. Martens, S.G. Hinch, and R.E. Diewert. – 1996. Plasma nonesterified fatty acid profiles in male and female sockeye salmon Oncorhynchus nerka, during the spawning migration. Can. J. Fish. Aquat. Sci, 53: 1418-1426. doi:10.1139/cjfas-53-6-1418

Beamish, F.W.H. – 1980. Biology of the North American anadromous sea lamprey. Can. J. Fish. Aquat. Sci., 37: 1924-1943. doi:10.1139/f80-233

Beamish, F.W.H., I.C. Potter and E. Thomas. – 1979. Proximate composition of the adult anadromous sea lamprey, Petromyzon marinus, in relation to feeding, migration and reproduction. J. Anim. Ecology, 48: 1-19. doi:10.2307/4096

Bernatchez, L. and J.J. Dodson. – 1987. Relationship between bioenergetics and behavior in anadromous fish migrations. Can. J. Fish. Aquat. Sci., 44: 399-407. doi:10.1139/f87-049

Bird, D.J. and I.C. Potter. – 1983. Changes in the fatty acid composition of triacylglycerols and phospholipids during the life cycle of the lamprey Geotria australis Gray. Comp. Biochem. Physiol., 75B: 31-41.

Bird, D.J., D.J. Ellis, and I.C. Potter. – 1993. Comparisons between the fatty acid composition of the muscle and ovary of the nonparasitic lamprey Lampetra planeri (Bloch) and their counterparts in the anadromous and parasitic Lampetra fluviatilis (L.). Comp. Biochem. Physiol., 105B: 327-332.

Buda, C., I. Dey, N. Balogh, I. Horvath, K. Maderspach, M. Juhasz, Y. K. Yeo, and T. Farkas. – 1994. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Nat. Acad. Sci. U.S.A., Biochemistry, 91: 8234-8238.

Cejas, J.R., E. Almansa, S. Jérez, A. Bolaños, M. Samper, and A. Lorenzo. – 2004. Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comp. Biochem. Physiol., 138B: 91-102.

Cordier, M., G. Brichon, J.M. Weber and G. Zwingelstein. – 2002. Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during annual cycle. Roles of environmental temperature and salinity. Comp. Biochem. Physiol., 133B: 281-288.

Davidson, B. and G. Cliff. – 2002. The liver lipid fatty acid profiles of seven Indian Ocean shark species. Fish Physiol. Biochem., 26: 171-175. doi:10.1023/A:1025447718625

Dey, I., C. Buda, T. Wiik, J.E. Halver and T. Farkas. – 1993. Molecular and structural composition of phospholipids membranes in livers of marine and freshwater fish in relation to temperature. Proc. Nat. Acad. Sci. U. S. A., Biochemistry, 90: 7498-7502.

Dodson, J.J. – 1997. Fish migration: an evolutionary perspective. In: J.J. Godin (ed.), Behavioural ecology of teleosts fishes, pp. 10-36. Oxford, University Press, UK.

Farmer, G.J. -1980. Biology and physiology of feeding in adult lampreys. Can. J. Fish. Aquat. Sci., 37: 1751-1761. doi:10.1139/f80-220

Fellows, F.C.I. and R. McLean. – 1982. A study of the plasma lipoproteins and the tissue lipids of the migrating lamprey, Mordacia mordax. Lipids, 17: 741-747. doi:10.1007/BF02534661

Gamper, N. and M.V. Savina. – 2000. Reversible metabolic depression in hepatocytes of lamprey (Lampetra fluviatilis) during pre-spawning: regulation by substrate availability. Comp. Biochem. Physiol., 127B: 147-154.

Gross, M.R. – 1987. Evolution of diadromy in fishes. Am. Fish Soc. Symp., 1: 14-25.

Gruger, E.H., R.W. Nelson and M.E. Stansby. – 1964. Fatty acid composition of oils from 21 species of marine fish, freshwater fish and shellfish. J. Am. Oil Chem. Soc., 41: 662-667. doi:10.1007/BF02661403

Hair, J.F., R. E. Anderson, R.L. Tatham, and W.C. Black. – 1998. Multivariate Data Analysis. 5th ed., Upper Saddle River, Prentice Hall, USA.

Halliday, R.G. -1991. Marine distribution of the sea lamprey (Petromyzon marinus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci., 48: 832-842. doi:10.1139/f91-099

Hardisty, M.W. and I.C. Potter. – 1971a. The behavior, ecology and growth of larval lampreys. In: M. W. Hardisty and I.C. Potter (eds.), The biology of lampreys, Vol 1, pp. 85-125. Academic Press, London.

Hardisty, M.W. and I.C. Potter. – 1971b. The general biology of adult lampreys. In: M. W. Hardisty and I.C. Potter (eds.), The biology of lampreys, Vol. 1, pp. 127-247. Academic Press, London.

Hazel, J.R – 1984. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol., 246: R460-R470.

Hazel, J.R. and E.E. Williams. – 1990. The role of alterations of membrane lipid composition in enabling physiological adaption of organisms to their physical environment. Prog. Lipid Res., 29: 167-227. doi:10.1016/0163-7827(90)90002-3

Henderson, R.J. and D.R. Tocher. – 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res., 26: 281-347. doi:10.1016/0163-7827(87)90002-6

Hoch, F.L. – 1988. Lipids and thyroid hormones. Prog. Lipid Res., 27: 199-270. doi:10.1016/0163-7827(88)90013-6

Huynh, M.D. – 2007. Comparison of fatty acid profiles of spawning and non-spawning Pacific herring, Clupea harengus pallasi. Comp. Biochem. Physiol., 146B: 504-511.

Joensen, H., P. Steingrund, I. Fjallstein and O. Grahl-Nielsen. – 2000. Discrimination between two reared stocks of cod (Gadus morhua) from the Faroe Islands by chemometry of the fatty acid composition in the heart tissue. Mar. Biol., 136: 573-580. doi:10.1007/s002270050717

Kao, Y.H., J.H. Youson, B. Vick and M.A. Sheridan. – 2002. Differences in the fatty acid composition of larvae and metamorphosing sea lampreys, Petromyzon marinus. Comp. Biochem. Physiol., 131B: 153-169.

Kozlova, T.A. and S.V. Khotimchenko. – 2000. Lipids and fatty acids of two pelagic cottoid fishes (Comephorus spp) endemic to Lake Baikal. Comp. Biochem. Physiol., 126B: 477–485.

Larsen, L.O. – 1980. Physiology of adult lampreys, with special regard to natural starvation, reproduction, and death after spawning. Can. J. Fish. Aquat. Sci., 37: 1762-1777. doi:10.1139/f80-221

LeBlanc, P.J., T.E. Gillis, M.F. Gerrits and J.S. Ballantyne. – 1995. Metabolic organization of liver and somatic muscle of landlocked sea lamprey, Petromyzon marinus, during spawning migration. Can. J. Zool., 73: 916-923. doi:10.1139/z95-107

Linko, R.R., M. Rajasilta and R. Hiltunen. – 1992. Comparison of lipid and fatty acid composition in vendace (Coregonus albuba L.) and available plankton feed. Comp. Biochem. Physiol., 103A: 205-212. doi:10.1016/0300-9629(92)90264-Q

Lowe, D.R., F.W.H. Beamish and I.C. Potter. – 1973. Changes in the proximate body composition of the landlocked sea lamprey Petromyzon marinus (L.) during larval life and metamorphosis. J. Fish Biol., 5: 673-682. doi:10.1111/j.1095-8649.1973.tb04503.x

Marmer, W. and R. Maxwell. – 1981. Dry column method for the quantitative extraction and simultaneous class separation of lipid from muscle tissue. Lipids, 16: 365-370. doi:10.1007/BF02534964

Morrison, W.R. and L.M. Smith. – 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res., 5: 600-608.

Peng, J., Y. Larondelle, D. Pham, R.G. Ackman and X. Rollin.– 2003. Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Physiol., 134B: 335-348.

Phleger, C.F., P.D. Nichols and P. Virtue. – 1997. The lipid, fatty acid and fatty alcohol composition of the myctophid Electrona Antarctica. High level of wax esters and food-chain implications. Antarct. Sci., 9: 258-265. doi:10.1017/S0954102097000345

Phleger, C.F., M.M. Nelson, B.D. Mooney and P.D. Nichols.– 1999a. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct. Sci., 11: 436-444. doi:10.1017/S0954102099000565

Phleger, C.F., P.D. Nichols, E. Erb and R. Williams. – 1999b. Lipids of the notothenioid fishes Trematomus spp. and Pagothenia borchgrevinki from East Antartica. Polar Biol., 22: 241-247. doi:10.1007/s003000050416

Plisetskaya, E. -1980. Fatty acid levels in blood of cyclostomes and fish. Environ. Biol. Fish, 5: 273-290. doi:10.1007/BF00005363

Potter, I.C. – 1980. Ecology of larval and metamorphosing lampreys. Can. J. Fish. Aquat. Sci., 37: 1641-1656. doi:10.1139/f80-212

Quintella, B.R., N. Andrade and P.R. Almeida. – 2003. Distribution, larval stage duration and growth of the sea lamprey ammocoetes in a highly modified river basin. Ecol. Freshw. Fish, 12: 1-8. doi:10.1046/j.1600-0633.2002.00030.x

Quintella. B.R., N.O. Andrade, A. Koed and P.R. Almeida. – 2004. Behavioral patterns of sea lampreys’ spawning migration through difficult passage areas, studied by electromyogram telemetry. J. Fish Biol., 65: 961-972.

Roff, D.A. – 1988. The evolution of migration and some life story parameters in marine fishes. Environ. Biol. Fish, 22: 133-146. doi:10.1007/BF00001543

Rogado, L. (coord.), P. Alexandrino, P.R. Almeida, J. Alves, J. Bochechas, R. Cortes, I. Domingos, F. Filipe, J. Madeira and F. Magalhães. – 2005. Peixes In: M.J. Cabral et al., Livro Vermelho dos Vertebrados de Portugal. Instituto de Conservação da Natureza, Lisboa.

Sargent, J.R., R.J. Henderson and D.R. Tocher - 1989. The lipids. In: J. E. Halver (ed.), Fish Nutrition 2nd ed., pp. 153-217. San Diego, California: Academic Press, Inc, USA.

Sargent, J.R., J.G. Bell, M.V. Bell, R.J. Henderson and D.R. Tocher.– 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol.,11: 183-198. doi:10.1111/j.1439-0426.1995.tb00018.x

Sheridan, M.A. – 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol., 90B: 679-690.

Sheridan, M.A., W.V. Allen and T.H. Kerstetter. – 1985. Seasonal variations in the lipid composition of steelhead trout, Salmo gairdnerii Richardson, associated with parr-smolt transformation. J. Fish Biol., 23: 125-134. doi:10.1111/j.1095-8649.1983.tb02887.x

Stoknes, I.S., H.M.W. Økland, E. Falch and M. Synnes. – 2004. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranches. Comp. Biochem. Physiol., 138B: 183-191.

Takama, K., T. Suzuki, K. Yoshida, H. Arai and T. Mitsui. – 1999. Phosphatidylcholine levels and their fatty acid compositions in teleosts tissues and squid muscle. Comp. Biochem. Physiol., 124B: 109-116.

Varljen, J., S. Šulic, J. Brmalj, L. Balticic, V. Obersnel and M. Kapovic´. – 2003. Lipid classes and fatty acid composition of Diplodus vulgaris and Conger conger originating from the Adriatic Sea. Food Tech. Biotechnol., 41: 149-156.

Viga, A. and O. Grahl-Nielsen. – 1990. Genotypic and phenotypic fatty acid composition in the tissues of salmon, Salmo salar. Comp. Biochem. Physiol., 96B: 721-727.

Vlieg, P., T. Murray and D.R. Body. – 1993. Nutritional data on six oceanic pelagic fish species from New Zealand. J. Food Compos. Anal., 6: 45-54. doi:10.1006/jfca.1993.1006




Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es