Genetic differentiation of Atlantic populations of the intertidal copepod Tigriopus brevicornis

Authors

  • Françoise Denis Département «Milieux et peuplements Aquatiques», Muséum National d’Histoire Naturelle
  • Rozenn Ravallec Département «Milieux et peuplements Aquatiques», Muséum National d’Histoire Naturelle
  • Jean-François Pavillon Institut Océanographique de Paris
  • Alain Van Wormhoudt Département «Milieux et peuplements Aquatiques», Muséum National d’Histoire Naturelle

DOI:

https://doi.org/10.3989/scimar.2009.73n3579

Keywords:

biogeography, copepods, Tigriopus, genetic population structure

Abstract


The Harpacticoid copepod Tigriopus brevicornis belongs to the meiofauna of intertidal rock pools and is distributed widely along European coasts. Sixteen sites were sampled from the Irish Sea to the coasts of Spain. We used the ITS1 marker to analyse the relationship between the populations because it shows low intrapopulational variation (mean pairwise difference: 1.00 ± 0.8) and high interpopulational divergence (mean pairwise difference: 16.38 ± 7.39). A total of 57 bp out of 433 bp were recognised as informative nucleotides among the 61 individuals analysed. The analysis of the genetic relationships highlighted a north-south split in the distribution of the natural populations and showed a genetic break point around the Gironde estuary, which is probably due to differences in the geomorphologic characteristics of the coastal area on the two different sides of this estuary. Various populations were isolated and the ITS1 sequences indicated that there are specific genetic signatures in these populations. The northern set of populations, which was sampled along a large rocky coastline, had a metapopulation structure with genetic exchanges between geographically close populations and also between geographically far ones. The southern set of populations, which was sampled in small rocky pools on large sandy beaches, showed isolated populations as a consequence of the geomorphology of the area.

Downloads

Download data is not yet available.

References

Bandelt, H.J., P. Forster and A. Rohl. – 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37-48.

Boileau, M.G. and B.E. Taylor. – 1994. Chance events, habitat age, and the genetic structure of pond populations. Arch. Hydrobiol., 132: 191-202.

Burton, R.S. – 1986. Evolutionary consequences of restricted gene flow in the intertidal copepod Tigriopus californicus. Bull. Mar. Sci., 39: 526-535.

Burton, R.S. – 1990. Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution, 44: 1814-1822. doi:10.2307/2409510

Burton, R.S. – 1997. Genetic evidence for long term persistence of marine invertebrate populations in an ephemeral environment. Evolution, 51: 993-998. doi:10.2307/2411174

Burton, R.S. – 1998. Intraspecific phylogeography across the point conception biogeographic boundary. Evolution, 52: 734-745. doi:10.2307/2411268

Burton, R.S. and M.W. Feldman. – 1983. Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochem. Genet., 21: 239-251. doi:10.1007/BF00499136 PMid:6860293

Burton, R.S., M.W. Feldman and S.G. Swisher. – 1981. Linkage relationships among five enzyme-coding gene loci in the copepod Tigriopus californicus: a genetic confirmation of achiasmiatic meiosis. Biochem. Genet., 19: 1237-1245. doi:10.1007/BF00484576 PMid:6461328

Burton, R.S. and B.N. Lee. – 1994. Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus. Proc. Natl. Acad. Sci. USA, 91: 5197-5201. doi:10.1073/pnas.91.11.5197

Burton, R.S., P.D. Rawson and S. Edmands. – 1999. Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Amer. Zool., 39: 451-462.

Crease, T.J., M. Lynch and K. Spitze. – 1990. Hierarchical analysis of population genetic variation in mitochondrial and nuclear genes of Daphnia pulex. Mol. Biol. Evol., 7(5): 444-458

Crowe, T.P., R.C. Thompson, S. Bray and S.J. Hawkins. – 2000. Impacts of anthropogenic stress on rocky intertidal communities. J. Aquat. Ecosyst. Stress Recovery, 7: 273-297. doi:10.1023/A:1009911928100

Davenport, J., P.R.O. Barnett and R.J. McAllen. – 1997. Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus. J. Mar. Biol. Assoc. UK, 77: 3-16.

Dybdahl, M. – 1994. Extinction, recolonization and the genetic struc- ture of tidepool copepod populations. Evol. Ecol., 8: 113-124 doi:10.1007/BF01238245

Edmands, S. – 2001. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol. Ecol., 10: 1743-1750. doi:10.1046/j.0962-1083.2001.01306.x PMid:11472541

Fabry, S., A. Kohler and A.W. Coleman. – 1999. Intraspecies analysis: comparison of ITS sequence data and gene intron sequence data with breeding data for a worldwide collection of Gonium pectorale. J. Mol. Evol., 48: 94-101. doi:10.1007/PL00006449 PMid:9873081

Felsenstein, J. – 1985. Confidence limits on phylogenies: an approach using the boostrap. Evolution, 39: 783-791. doi:10.2307/2408678

Forget, J., B. Beliaeff and G. Bocquene. – 2003. Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquat. Toxicol., 62: 195-204. doi:10.1016/S0166-445X(02)00084-X PMid:12560168

Grimm, V., K. Reise and M. Strasser. – 2003. Marine metappulations: a useful concept? Helgoland Mar. Res., 56: 222-228.

Gutow, L. and H.D. Franke. – 2003. Metapopulation structure of the marine isopod Idotea metallica, a species associated with drifting habitat patches. Helgoland Mar. Res., 56: 259-264.

Hillis, D.M. and M.T. Dixon. – 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol., 66: 411-453. doi:10.1086/417338 PMid:1784710

Igarashi, S. – 1959. On the relationship between the environmental conditions of tide pool and the tigriopus population. Bull. Mar. Biol. stn. Asamushi, 9: 176-171.

Johnson, M.P. – 2001. Metapopulation dynamics of Tigriopus brevicornis (Harpacticoida) in intertidal rock pools. Mar. Ecol. Prog. Ser., 211: 215-224. doi:10.3354/meps211215

Jolly, M.T. – 2005. Structures génétiques et histoires évolutives de polychètes inféodées aux sédiments fins envasés dans l’Atlantique Nord-Est: les genres Pectinaria sp. et Owenia sp. Ph.D. thesis, Univ. Paris VI.

Jolly, M.T., D. Jollivet, F. Gentil, E. Thiebaut and F. Viard. – 2005. Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity, 94(1): 23-32. doi:10.1038/sj.hdy.6800543 PMid:15305173

Keane, T.M., C.J. Creevey, M. Pentony, T.J. Maughton and J. McInemey. – 2006. Assessment of methods for aminoacid matrix selection and their use on empirical data shows that ad hoc assumption for choice of matrix are not justified. BMC Evol. Biol., 6: 29. doi:10.1186/1471-2148-6-29 PMid:16563161    PMCid:1435933

Knowlton, N. and L. Weight. – 1998. New dares and new rates for divergence across the isthmus of Panama. Proc. R. Soc. Zool. London B, 265: 2257-2263. doi:10.1098/rspb.1998.0568 PMCid:1689526

Kwok, K.W.H. and K.M.Y. Leung. – 2005. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull., 51: 830-837. doi:10.1016/j.marpolbul.2005.02.036 PMid:16291193

Lee, Y.-M., I.-C. Kim, S.-O. Jung ans J.S. Lee. – 2005. Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda). Mar. Pollut. Bull., 51: 757-768. doi:10.1016/j.marpolbul.2005.02.014 PMid:16291190

McAllen, R. and W. Block. – 1997. Aspects of the cryobiology of the intertidal harpacticoid copepod Tigriopus brevicornis (O. F. Muller). Cryobiology, 35: 309-317. doi:10.1006/cryo.1997.2046 PMid:9441661

Miller, B.R., M.B. Crabtree and H.M. Savage. – 1996. Phylogeny of fourteen Culex mosquitos species including the Culex pipiens complex inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol. Biol., 5: 93-107. doi:10.1111/j.1365-2583.1996.tb00044.x PMid:8673266

Navajas M., J. Lagnel, J. Gutierrez and P. Boursot. – 1998. Species- wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 80: 742-752. doi:10.1046/j.1365-2540.1998.00349.x PMid:9675873

Pavillon, J.-F., J. Oudot, A. Dlugon, E. Roger and G. Juhel. – 2002. Impact of the ‘Erika’ oil spill on the Tigriopus brevicornis ecosystem at the Le Croisic headland (France): Preliminary observations. J. Mar. Biol. Assoc. UK, 82: 409-413. doi:10.1017/S0025315402005659

Remerie, T., T. Bourgois, D. Peelaers, A. Vierstraete, J. Vanfleteren and A. Vanreusel. – 2006. Phylogeographic patterns of the mysid Mesopodopsis slabberi (Crustacea, Mysida) in Western Europe: evidence for high molecular diversity and cryptic speciation. Mar. Biol., 149: 465-481. doi:10.1007/s00227-005-0235-7

Schizas, N.V., G.T. Street, B.C. Coull, G.T. Chandler and J.M. Quattro. – 1999. Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Mar. Biol., 135: 399-405. doi:10.1007/s002270050640

Schlötterer, C., M.T. Hauser, A. von Haeseler and D. Tautz. – 1994. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol., 11: 513-522.

Schneider, S., D. Roessli and L. Excoffier. – 2000. Arlequin vers 2000 : a software for population genetics data analysis. Genetics and Biometriy laboratory. Univ. Geneva. Switzerland, Geneva. Slatkin, M. – 1987. Gene flow and the geographic structure of natural populations. Science, 236: 787-92.

Slatkin, M. – 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution, 47(1): 264-279. doi:10.2307/2410134

Tamura, K., J. Dudley, M. Nei and S. Kumar. – 2007. MEGA 4.: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738

Thompson, J.D., D.G. Higgins and T.J. Gibson. – 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Ac. Res., 22: 4673-4680. doi:10.1093/nar/22.22.4673 PMid:7984417    PMCid:308517

Vogler, A.P. and R. DeSalle – 1994. Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol. Biol. Evol., 11: 393-405.

Wade, M.J. and D.E. McCauley. – 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42: 995-1005 doi:10.2307/2408915

Willett, C.S. and R.S. Burton. – 2002. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comp. Biochem. Phys. B, 132: 739-750. doi:10.1016/S1096-4959(02)00091-X

Willett, C.S. and R.S. Burton. – 2003. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comp. Biochem. Phys. B, 135: 639-646. doi:10.1016/S1096-4959(03)00145-3

Winnepenninckx, B., T. Backeljau and R. Dewachter. – 1993. Extraction of high molecular weight DNA from Molluscs. Trends Genet., 9: 407. doi:10.1016/0168-9525(93)90102-N PMid:8122306

Downloads

Published

2009-09-30

How to Cite

1.
Denis F, Ravallec R, Pavillon J-F, Van Wormhoudt A. Genetic differentiation of Atlantic populations of the intertidal copepod Tigriopus brevicornis. Sci. mar. [Internet]. 2009Sep.30 [cited 2024Apr.23];73(3):579-87. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1087

Issue

Section

Articles