Scientia Marina, Vol 73, No 1 (2009)

Associated fauna of the fan shell Pinna nobilis (Mollusca: Bivalvia) in the northern and eastern Tunisian coasts

Lotfi Rabaoui
Research Unit of Biology, Ecology and Parasitology of Aquatic Organisms, Faculty of Sciences of Tunis, Tunisia

Sabiha Tlig-Zouari
Research Unit of Biology, Ecology and Parasitology of Aquatic Organisms, Faculty of Sciences of Tunis, Tunisia

Andrea Cosentino
Dipartimento di Biologia Animale ed Ecologia Marina, Università di Messina, Italy

Oum Kalthoum Ben Hassine
Research Unit of Biology, Ecology and Parasitology of Aquatic Organisms, Faculty of Sciences of Tunis, Tunisia


Epifaunal communities associated with the fan shell Pinna nobilis Linnaeus, 1758 along the Tunisian coastline were investigated. Both univariate and multivariate analysis were done at different spatial scales within five populations located at different localities, three from northern and two from eastern Tunisia. The size of Pinna did not appear as the main factor affecting the structure of the associated biota, which seemed to be more influenced by (a) marine-lagoon and (b) biogeographic gradients. Patterns of similarity of sessile sclerobionts and motile epifauna were clearly different. The former assemblage best replied to lagoon-sea gradient and to locality, with three real clusters at 40%, whereas the latter assemblage scattered widely in a non-metrical MDS plane, with two real clusters only at 20% similarity. The spatial turnover of motile species was ten times higher than that of sessile species at a small spatial scale, being less affected by Pinna size, and three times higher though invariant at a large geographic scale. On the other hand, β-diversity of sessile species appeared to be more influenced by latitudinal (climatic) gradient at a large scale, being higher in the northern than in the eastern communities. Analysis of taxonomic (dis)similarity of the whole community detected these two sources of environmental (lagoon-sea gradient) and biogeographic (lati-longitudinal gradient) variation, although each phylum showed its peculiar pattern. In terms of Dajoz’s constancy index the majority of associated communities were dominated by rare species, and within the majority of epifaunal assemblages, the most abundant sessile epizoobiont was a bivalve mollusc. The sessile epifauna was dominated by active filterers, which led to a possible existence of trophic competition between the host and the sedentary epizoites, since both basibionts and sclerobionts occupy the same trophic niche. The fan shell played an important ecological role, providing new hard substrate to colonise, increasing the spatial heterogeneity for the surrounding soft-bottom communities, and contributing to the overall increase of the local biotope complexity level.


Pinna nobilis; epifauna; assemblages; β-diversity; spatial scale; Tunisian coasts

Full Text:



Arvanitidis, C., G. Bellan, P. Drakopoulos, V. Valavanis, C. Dounas, A. Koukouras and A. Eleftheriou. – 2002. Seascape biodiversity patterns along the Mediterranean and Black Sea: lesson from the biogeography of benthic polychaetes. Mar. Ecol. Prog. Ser., 244: 139-152. doi:10.3354/meps244139

Barnes, D.K.A. and A. Clarke. – 1995. Epibiontic communities on sublittoral macroinvertebrates at Signy Island, Antarctica. J. Mar. Biol. Assoc. U.K., 75: 689-703.

Bhaud, M. – 2000. Two contradictory elements determine invertebrate recruitment: dispersion of larvae and spatial restrictions on adults. Ocenol. Act., 23(4): 409-422. doi:10.1016/S0399-1784(00)00146-8

Bronmark, C. – 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos, 45: 26-30. doi:10.2307/3565218

Butler, A.J. and R.M. Connolly. – 1999. Assemblages of sessile marine invertebrates: still changing after all these years? Mar. Ecol. Prog. Ser., 182: 109-118. doi:10.3354/meps182109

Clarke, K.R. and R.M. Warwick. – 2001. Change in marine communities: An approach to Statistical Analysis and Interpretation. 2nd edition. PRIMER-E, Plymouth, U.K.

Clarke K. R. and R.N. Gorley. – 2006. PRIMER v6 User Manual/ Tutorial. PRIMER-E Ltd.

Conover, M.R. – 1979. Effect of gastropod shell characteristics and hermit crabs on shell epifauna. J. Exp. Mar. Biol. Ecol., 40: 81-94. doi:10.1016/0022-0981(79)90036-4

Corriero, G. and R. Pronzato. – 1987. Epibiontic sponges on the bivalve Pinna nobilis. Mar. Ecol. Prog. Ser., 35: 75-82. doi:10.3354/meps035075

Cosentino, A. and S. Giacobbe. – 2007. Aspects of epizoobiontic mollusc assemblages on Pinna shells. I. Composition and structure. Cah. Biol. Mar., 48: 187-196.

Cosentino, A. and S. Giacobbe. – 2008. Aspects of epizoobiontic mollusc assemblages on Pinna shells. II. Does the Mediterranean Pinna nobilis represent an isle of biodiversity? Cah. Biol. Mar., 49: 161-173.

Dajoz, R. – 1971. Précis d’écologie. Dunod, Paris.

Davidson, I.C., A.C. Crook and D.K.A. Barnes. – 2004. Quantifying spatial patterns of intertidal biodiversity: is movement important? Mar. Ecol., 25(1): 15-34. doi:10.1111/j.1439-0485.2004.00015.x

Davis, A.R. and G.A. White. – 1994. Epibiosis in a guild of sessile subtidal invertebrates in south-eastern Australia: A quantitative survey. J. Exp. Mar. Biol. Ecol., 177: 1-14. doi:10.1016/0022-0981(94)90140-6

Fernández, L., J. Parapar, E. González-Gurriarán and R. Muiño. – 1998. Epibiosis and ornamental cover patterns of the spider crab Maja squinado on the Galician coast, north-western Spain: influence of behavioural and ecological characteristics of the host. J. Crust. Biol., 18: 728-737. doi:10.2307/1549149

Gili, J.M., P. Abello and R. Villanueva. – 1993. Epibionts and intermoult duration in the crab Bathynectes piperitus. Mar. Ecol. Prog. Ser., 98(1-2): 107-113. doi:10.3354/meps098107

Giacobbe, S. and P. Rinelli. – 1992. Ecological notes on Arbaciella elegans (Mortensen) from populations of Pinna in the Straits of Messina. In: L. Scalera-Liaci and C. Canicatti (eds.), Echinoderm Research, pp. 185-190. Balkema, Rotterdam.

Giacobbe, S. – 2002. Epibiontic mollusc communities on Pinna nobilis L. (Bivalvia, Mollusca), J. Nat. Hist., 36: 1385-1396. doi:10.1080/00222930110056892

Giangrande, A., S. Geraci and G. Belmonte. – 1994. Life-cycle and life-history diversity in marine invertebrates and the implications in community dynamics. Oceanogr. Mar. Biol. Annu. Rev., 32: 305-333.

Glasby, C.J. – 2005. Polychaete distribution patterns revisited: an historical explanation. Mar. Ecol., 26: 235-245. doi:10.1111/j.1439-0485.2005.00059.x

Gravina, M.F., G.D. Ardizzone and A. Giangrande. – 1988. Selecting Factors in Polychaete Communities of Central Mediterranean Coastal Lagoons. Int. Rev. Ges. Hydrobiol., 73(4): 465-476. doi:10.1002/iroh.19880730409

Gray, J. S. – 2000. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. J. Exp. Mar. Biol. Ecol., 250: 23-49. doi:10.1016/S0022-0981(00)00178-7 PMid:10969162

Izsák, C. and A.R.G. Price. – 2001. Measuring β-diversity using a taxonomic similarity index, and its relation to spatial scale. Mar. Ecol. Prog. Ser., 215: 69-77. doi:10.3354/meps215069

Karlson, R.H. and M.A. Shenk. – 1983. Epifaunal abundance, association, and overgrowth patterns on large hermit crab shells. J. Exp. Mar. Biol. Ecol., 70: 55-64. doi:10.1016/0022-0981(83)90148-X

Key, M.M., W.B. Jr Jeffries, H.K. Voris and M. Yang-Chang. – 1996. Epizoic bryozoans, horseshoe crabs, and other mobile benthic substrates. Bull. Mar. Sci., 58(2): 368-384.

Loreau, M. – 2000. Are communities saturated? On the relationship between α, β and γ diversity. Ecology Lett., 3: 73-76. doi:10.1046/j.1461-0248.2000.00127.x

Loreau, M. and N. Mouquet. – 1999. Immigration and the Maintenance of Local Species Diversity. Am. Nat., 154(4): 427-440. doi:10.1086/303252 PMid:10523489

Magurran, A. – 2004. Measuring Biological Diversity. Blackwell Publishing.

Munguia, P. – 2004. Successional patterns on pen shell communities at local and regional scales. J. Anim. Ecol., 73: 64-74. doi:10.1111/j.1365-2656.2004.00778.x

Novak, R. – 1984. A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica (L.) Delile. Mar. Ecol. Prog. Ser., 5: 143-190.

Olabarria, C. – 2000. Epibiont molluscs on neogastropod shells from sandy bottoms, Pacific coast of Mexico. J. Mar. Biol. Assoc. U.K., 80: 291-298. doi:10.1017/S0025315499001861

Parapar, J., L. Fernández, E. González-Gurriarán and R. Muiño. – 1997. Epibiosis and masking material in the spider crab Maja squinado (Decapoda: Majidae) in the Ría de Arosa (Galicia, NW Spain). Cah. Biol. Mar., 38: 221-234.

Piraino, S. and C. Morri. – 1990. Zonation and Ecology of Epiphytic Hydroids in a Mediterranean Coastal Lagoon: The ‘Stagnone’ of Marsala (North-West Sicily). Mar. Ecol., 11(1): 43-60. doi:10.1111/j.1439-0485.1990.tb00227.x

Price, A.R.G., M.J. Keeling and C.J. O’Callaghan. – 1999. Oceanscale patterns of ‘biodiversity’ of Atlantic asteroids determined from taxonomic distinctness and other measures. Biol. J. Linn. Soc., 66: 187-203.

Rabaoui L., S. Tlig-Zouari, S. Katsanevakis and O.K. Ben Hassine. – 2007. Comparison of absolute and relative growth patterns among five Pinna nobilis populations along the Tunisian coastline: an information theory approach. Mar. Biol., 152: 537-548. doi:10.1007/s00227-007-0707-z

Sebens, K.P. – 1991. Habitat structure and community dynamics in marine benthic systems. In: S. Bell, E. McCoy and H.R. Mushinsky (eds.), Habitat structure: The physical arrangement of objects in space, pp. 211-234. Chapman and Hall, London.

Silina, A.V. and I.I. Ovsyannikova. – 1998. The barnacle Balanus rostratus and its habitat in the north-western of the Sea of Japan. Ophelia, 49: 47-54.

Thompson, R.C., B.J. Wilson, M.L. Tobin, A.S. Hill and S.J. Hawkins. – 1996. Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. J. Exp. Mar. Biol. Ecol., 202: 73-84. doi:10.1016/0022-0981(96)00032-9

Vance, R.R. – 1978. A mutualistic interaction between a sessile marine clam and its epibionts. Ecology, 59(4): 679-685. doi:10.2307/1938770

Wahl, M. – 1996. Fouled snails in flow: Potential of epibionts on Littorina littorea to increase drag and reduce snail growth rates. Mar. Ecol. Prog. Ser., 138(1-3): 157-168. doi:10.3354/meps138157

Warner, G.F. – 1997. Occurrence of epifauna on the periwinkle, Littorina littorea (L.) and interactions with the polychaetes Polydora ciliata (Johnston), Hydrobiologia, 355: 41-47. doi:10.1023/A:1003011020446

Whittaker, R.H. – 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr., 30: 279-338. doi:10.2307/1943563

Zavodnik, D. – 1963. Pinna nobilis L., comme centre d’association. Rapports et Procès verbaux. Rapp. Comm. Int. Expl. Sci. Mer. Médit., 17: 273-275.

Zavodnik, D. – 1967. Contribution to the ecology of Pinna nobilis L. (Moll., Bivalvia) in the northern Adriatic. Thalassia Jugosl., 3: 93-10.

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support