Scientia Marina, Vol 73, No 1 (2009)

Reproductive traits of an estuarine crab, Neohelice (= Chasmagnathus) granulata (Brachyura: Grapsoidea: Varunidae), in two contrasting habitats

Paola V. Silva
Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Tomás A. Luppi
Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Eduardo D. Spivak
Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Klaus Anger
Biologische Anstalt Helgoland, Stiftung Alfred- Wegener- Institut für Polar- und Meeresforschung, Meeresstation, Germany


Reproductive traits of an estuarine crab, Neohelice (= Chasmagnathus) granulata (Dana 1851), were compared between individuals living in contrasting habitats (mudflat and saltmarsh) of the same population in the brackish coastal lagoon of Mar Chiquita, Argentina. In both habitats, most measures of egg biomass decreased during embryogenesis, including total dry weight (DW) and organic matter (measured as ash-free dry weight, AFDW) per egg, the contents of ash, carbon, hydrogen and nitrogen (per egg and as percentage values of DW), the energy content (estimated from C; both per egg and per mg DW), and the C/N and C/H mass ratios. Egg size, wet weight (WW), and water content (in µg and % of WW), by contrast, increased significantly during the time of embryonic development. These parameters reached significantly higher final (near-to-hatching) values in mudflats than in saltmarshes (egg volume 0.0249 vs 0.0233 mm3; WW 36.5 vs 28.8 µg; water content 30.7 vs 23.2 µg per egg or 84.2 vs 80.2% of WW, respectively). Fecundity and reproductive effort did not differ significantly between habitats. Habitat-specific differences in the water content and size of crab eggs are discussed in relation to small-scale local variation in environmental conditions.


Neohelice; Chasmagnathus; estuary; fecundity; reproductive effort; egg volume; elemental composition (CHN)

Full Text:



Amsler, M.O. and R.Y. George. – 1984. Seasonal variation in the biochemical composition of the embryos of Callinectes sapidus Rathbun. J. Crust. Biol., 4: 546-553. doi:10.2307/1548068

Anger, K., E. Spivak, C. Bas, D. Ismael and T. Luppi. – 1994. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina. Helgol. Meeresunt., 48: 445-466. doi:10.1007/BF02366257

Anger, K., G. Moreira and D. Ismael. – 2002. Comparative size biomass, elemental composition (C, N, H), and energy concentration of caridean shrimp eggs. Invertebr. Reprod. Dev., 42: 83-93.

Anger, K. and G. Moreira. – 2004. Biomass and elemental composition of eggs and larvae of a mangrove crab, Sesarma rectum Randall (Decapoda: Sesarmidae) and comparison to a related species with abbreviated larval development. Sci. Mar., 68(1): 117-126. doi:10.3989/scimar.2004.68n1117

Anger, K., E. Spivak, T. Luppi, C. Bas and D. Ismael. – 2008. Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration. Helgol. Mar. Res., 62: 93-102. doi:10.1007/s10152-007-0076-5

Bas, C. and E. Spivak. – 2000. Effect of salinity on embryos of two south-western Atlantic estuarine grapsid crab species cultured in vitro. J. Crust. Biol., 20: 647-656. doi:10.1651/0278-0372(2000)020[0647:EOSOEO]2.0.CO;2

Bas, C. and E. Spivak. – 2003. Effects of embryonic salinity exposure on larval development in two populations of the estuarine crab Chasmagnathus granulatus Dana, 1851 (Crustacea: Brachyura). Invertebr. Reprod. Dev., 43(2): 117-123.

Bas, C., E. Spivak and K. Anger. – 2007. Seasonal and interpopulational variability in fecundity, egg size, and elemental composition (CHN) of eggs and larvae in a grapsoid crab, Chasmagnathus granulatus. Helgol. Mar. Res., 61: 225-237. doi:10.1007/s10152-007-0070-y

Bortolus, A. and O. Iribarne. – 1999. Effect of the SW Atlantic Burrowing crab Chasmagnathus granulata on Spartina saltmarsh. Mar. Ecol. Prog. Ser., 178: 79-88. doi:10.3354/meps178079

Botto, F. and O. Iribarne. – 1999. Effect of the Burrowing crab Chasmagnathus granulata (Dana) on the benthic community of a SW Atlantic coastal lagoon. J. Exp. Mar. Biol. Ecol., 241: 263-284. doi:10.1016/S0022-0981(99)00089-1

Clarke, A., J. Brown and L. Holmes. – 1990. The biochemical composition of egg from Macrobrachium rosenbergii in relation to embryonic development. Comp. Biochem. Physiol., 96B: 505-511.

Delgado, E. and O. Defeo. – 2008. Reproductive plasticity in mole crabs, Emerita brasiliensis, in sandy beachs with contrasting morphodynamics. Mar. Biol., 153: 1065-1074. doi:10.1007/s00227-007-0879-6

Giménez, L. – 2006. Phenotypic link in complex life cycles: conclusions from studies with decapod crustaceans. Integr. Comp. Biol., 46: 615-622. doi:10.1093/icb/icl010

Giménez, L. and K. Anger. – 2001. Relationship among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. J. Exp. Mar. Biol. Ecol., 260: 441-257.

Giménez, L. and K. Anger. – 2003. Larval performance in an estuarine crab, Chasmagnathus granulata, is a consequence of both larval and embryonic experience. Mar. Ecol. Prog. Ser., 249: 251-264. doi:10.3354/meps249251

Gomez Diaz, G. – 1987. Effect of environmental embryonic temperature on larval development of Macrobrachium rosenbergii (De Man). J. Exp. Mar. Biol. Ecol., 114: 39-47. doi:10.1016/0022-0981(87)90138-9

Harrison, K.E. – 1990. The role of nutrition in maturation, reproduction and embryonic development in decapod crustaceans: a review. J. Shellfish Res., 9: 1-28.

Hartnoll, R. and R. Paul. – 1982. The embryonic development of attached and isolated eggs Carcinus maenas. Int. J. Invertebr. Reprod., 5: 247-252.

Heras, H., M.R. Gonzales Baró and R.J. Pollero. – 2000. Lipid and fatty acid composition and energy partitioning during development in the shrimp Machrobracium borellii. Lipids, 35: 645-651. doi:10.1007/s11745-000-0569-z

Hines, A.H. – 1991. Fecundity and reproductive output in nine species of Cancer crabs (Crustacea, Brachyura, Cancridae). Can. J. Fish. Aquat. Sci., 48: 267-275. doi:10.1139/f91-037

Hines, A H. – 1992. Constraint on reproductive output in brachyuran crabs: Pinnotherids test the rule. Am. Zool., 32: 503-511.

Holland, D.L. – 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In: D.C. Malins and J.R. Sargent (eds.), Biochemical and biophysical perspectives in marine biology, pp. 85-123. London: Academic Press.

Iribarne, O., A. Bortolus and F. Botto. – 1997. Between-habitat differences in burrow characteristics Atlantic burrowing crab Chasmagnathus granulata. Mar. Ecol. Prog. Ser., 155: 137-145. doi:10.3354/meps155137

Ituarte, R., E. Spivak and T. Luppi. – 2004. Female reproductive cycle of the South-western Atlantic estuarine crab Chasmagnathus granulatus (Brachyura: Grapsoidea: Varunidae). Sci. Mar., 68(1): 127-137.

Ituarte, R., C. Bas, T. Luppi and E. Spivak. – 2006. Interpopulational differences in the female reproductive cycle of the south-western Atlantic estuarine crab Chasmagnathus granulatus Dana, 1851 (Brachyura: Grapsoidea: Varunidae). Sci. Mar., 70(4):709-718. doi:10.3989/scimar.2006.70n4709

Jones, M.B. and M.J. Simons. – 1982. Response of embryonic stages of the estuarine mud crab, Macrophthalmus hirtipes (Jacquinot), to salinity. Int. J. Invertebr. Reprod., 4: 273-279.

Jones, M.B. and M.J. Simons. – 1983. Latitudinal variation in reproductive characteristics of a mud crab, Helice crassa (Grapsidae). Bull. Mar. Sci., 33(3): 656- 670.

Kennish, R. – 1996. Diet composition influences the fitness of the herbivorous crab Grapsus albolineatus. Oecologia, 105: 22-29. doi:10.1007/BF00328787

Lardies, M.A. and I.S. Wehrtmann. – 1996. Aspects of the reproductive biology of Petrolisthes laevigatus (Guérin, 1835) (Decapoda, Anomura, porcellanidae). Part I: reproductive output and chemical composition of eggs during embryonic development. Arch. Fish. Mar. Res., 43: 121-135.

Lardies, M.A. and I.S. Wehrtmann. – 1997. Egg production in Betaeus emarginatus (H. Milne Edwards, 1837) (Decapoda: Alpheidae): fecundity, reproductive output and chemical composition of eggs. Ophelia, 46: 165-174.

Lardies, M.A. and J.C. Castilla. – 2001. Latitudinal variation in the reproductive biology of the commensal crab Pinnaxodes chilensis (Decapoda: Pinnotheridae) along the Chilean coast. Mar. Biol., 139: 1125-1133. doi:10.1007/s002270100661

Lardies, M.A. and I.S. Wehrtmann. – 2001. Latitudinal variation in the reproductive biology of Betaeus truncatus (Decapada: Alpheidae) along the Chilean coast. Ophelia, 55(1): 55-67.

Laughlin, R.B.Jr. and W. French. – 1989. Interactions between temperature and salinity during brooding on subsequent zoeal development of the mud crab Rhithropanopeus harrisii. Mar. Biol., 102: 377-386. doi:10.1007/BF00428490

Luppi, T., C. Bas, E. Spivak and K. Anger. – 1997. Fecundity of two grapsid crab species in the Laguna Mar Chiquita, Argentina. Arch. Fish. and Mar. Res., 45: 149-166.

Méndez Casariego, A., T. Luppi, J. Alberti, P. Daleo and O. Iribarne. – 2006. Patrones de distribución espacial y movimiento de Chasmagnathus granulathus. VI Jornadas nacionales de Ciencias del Mar. Puerto Madryn, Argentina.

McLaren, I., C. Corkett and E. Zillioux. – 1969. Temperature adaptations of copepod eggs from the arctic to the tropics. Biol. Bull., 137: 486-493. doi:10.2307/1540170

O’Leary Amsler, M. and R. George. – 1984. The effect of temperature on the oxygen consumption and developmental rate of embryos of Callinectes sapidus Rathbun. J. Exp. Mar. Biol. Ecol., 82: 221-229. doi:10.1016/0022-0981(84)90106-0

Oliver, S.R., A. Escofet, P. Penchaszadeh and J.M. Orensanz. – 1972. Estudios ecológicos de la región esturial de Mar Chiquita (Buenos Aires, Argentina) I. Las comunidades bentónicas. An. Soc. Cient. Argentina, 193: 237-262.

Palacios, E., A. Ibarra, J. Ramírez, G. Portillo and I. Racotta. – 1998. Biochemical composition of eggs and nauplii in White Pacific shrimp, Penaeus vannamei (Boone), in relation to the physiological condition of spawners in a commercial hatchery. Aquacult. Res., 29: 183-189. doi:10.1111/j.1365-2109.1998.tb01123.x

Palacios, E., C. Perez-Rostro, J. Ramírez, A. Ibarra and I. Racotta. – 1999. Reproductive exhaustion in shrimp (Penaeus vannamei) reflected in larval biochemical composition, survival, and growth. Aquaculture, 171: 309-321. doi:10.1016/S0044-8486(98)00393-7

Pandian, T.J. – 1970a. Ecophysiological studies on the developing eggs and embryos of the European lobster Homarus gammarus. Mar. Biol., 5: 154-157. doi:10.1007/BF00352599

Pandian, T.J. – 1970b. Yolk utilization and hatching time in the Canadian lobster Homarus americanus. Mar. Biol., 7: 249-254. doi:10.1007/BF00367495

Pandian, T.J. – 1994. Arthropoda- Crustacea. In: K. G. Adiyodi and R. G. Adiyodi (eds.), Reproductive biology of invertebrates, pp. 39-166. Oxford and IBH Publ. CO. PVT Ltd. New Deli, India.

Péqueux, A. – 1995. Osmotic regulation in crustaceans. J. Crustac. Biol., 15: 1-60. doi:10.2307/1549010

Petersen, S. and K. Anger. – 1997. Chemical and physiological changes during the embryonic development of the spider crab Hyas araneus L. (Decapoda: Majidae). Comp. Biochem. Physiol., 117B: 299-306.

Reta, R., P. Martos, G. Perillo, C. Piccolo and A. Ferrante. – 2001. Características hidrográficas del estuario de la laguna Mar Chiquita. In: O. Iribarne (ed.), Reserva de biosfera Mar Chiquita: características físicas, biológicas y ecológicas, pp. 31-41. Editorial Martín. Mar del Plata, Argentina.

Sakai, K., M. Türkay and S-L. Yang. – 2006. Revision of the Helice/ Chasmagnathus complex (Crustacea: Decapoda: Brachyura). Abh. Senckenb. Naturforsch. Ges., 565:1-76

Salonen, K., J. Sarvala, I. Hakala and M. Vilijanen. – 1976. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21: 724-730.

Sandifer, P. – 1975. The role of pelagic larvae in recruitment to populations of adults decapod crustacean in the York River estuary and adjacent lower Chesapeake bay, Virginia. Est. Coast. Mar. Sci., 3:269-279. doi:10.1016/0302-3524(75)90028-6

Sastry, A. – 1983. Ecological aspect of reproduction. In: F.J. Vemberg and W.B. Vember (eds.), The biology of Crustacea. Environmental adaptations, vol 8, pp. 179-270. Academic, New York.

Sibert, V., P. Oullet and J-C. Brêthes. – 2004. Changes in yolk total proteins and lipid components and embryonic growth rates during lobster (Homarus americanus) egg development under a simulated seasonal temperature cycle. Mar. Biol., 144: 1075- 1086. doi:10.1007/s00227-003-1287-1

Silva, P., T. Luppi and E. Spivak. – 2007. Epibiosis on eggs and brooding care in the burrowing crab Chasmagnathus granulatus (Brachyura:Varunidae): comparison between mudflats and saltmarshes. J. Mar. Biol. Ass. U. K., 87(4): 893-901. doi:10.1017/S0025315407056068

Spivak, E., K. Anger, T. Luppi, C. Bas and D. Ismael. – 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgol. Meeresunt., 48: 59-78. doi:10.1007/BF02366202

Spivak, E., K. Anger, C. Bas, T. Luppi and D. Ismael. – 1996. Size grapsid crab species from Mar Chiquta Lagoon, Argentina. Nerítica, 10: 7-26.

Steachey, D.P.M. and K.M. Somers. – 1995. Potential, realized, and actual fecundity in the crayfish Orconectes immunis from southwestern Ontario. Can. J. Zool., 73: 672-677. doi:10.1139/z95-079

Steele, D. and V. Steele. – 1975. Egg size and duration of embryonic development in Crustacea. Int. Rev. Gesamten Hydrobiol., 60: 711-715. doi:10.1002/iroh.19750600609

Stella, V.S., L.S. López and E.M. Rodríguez. – 1996. Fecundity and brood biomass investment in the estuarine crab Chasmagnathus granulatus Dana, 1851 (Decapoda, Brachyura, Grapsidae). Crustaceana, 69: 306-312. doi:10.1163/156854096X00907

Tankersley, R.A., M.G. Wieber, M.A. Sigala and K.A. Kachura. – 1998. Migratory behavior of ovigerous blue crabs Callinectes sapidus: evidence for selective tidal-stream transport. Biol. Bull., 195: 168-173. doi:10.2307/1542824

Underwood, A. – 1997. Experiments in ecology. Cambridge, U.K: Cambridge University Press.

Valdés, L., M.T. Alvarez-Ossorio and E. Gonzales-Gurriarán. – 1991. Incubation of eggs of Necora puber (L. 1767) (Decapada, Brachyura, Portunidae), volume and biomass changes in embryonic development. Crustaceana, 60(2): 163-177. doi:10.1163/156854091X00371

Walker, A.; S. Ando; G. D. Smith and R. F. Lee. – 2006. The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comp. Biochem. Physiol., 143 (2): 201-208. doi:10.1016/j.cbpb.2005.11.015

Wear, R. – 1974. Incubation in the British Decapoda Crustacea, and the effects of temperature on the rate and success of embryonic development. J. Mar. Biol. Ass. U. K., 54: 745-762.

Wehrtmann, I. and G. Kattner. – 1998. Changes in volume, biomass, and fatty acids of developing eggs in Nauticaris magellanica (Decapoda: Caridea): a latitudinal comparison. J. Crust. Biol., 18: 413-422. doi:10.2307/1549406

Wehrtmann, I. and G. López. – 2003. Effects of temperature om the embryonic development and hatchling size of Betaeus emarginatus (Decapoda: caridea: Alpheidae). J. Nat. Hist., 37(18): 2165-2178. doi:10.1080/00222930210133291

Zar, J. – 1996. Biostatistical analysis. 3rd edn. New Jersey: Prentice Hall Press.

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support