Scientia Marina, Vol 73, No 1 (2009)

Spatial analysis of metal concentrations in the brown shrimp Crangon crangon (Linnaeus, 1758) from the southern North Sea

Kristine Jung
Carl von Ossietzky Universität Oldenburg, ICBM , Germany

Vanessa Stelzenmüller , United Kingdom

Gerd-Peter Zauke
Carl von Ossietzky Universität Oldenburg, ICBM , Germany


Spatial distributions of Cu, Pb, Cd, Ni and Zn concentrations in brown shrimps Crangon crangon (Linnaeus, 1758) collected on a cruise of FRV Walther Herwig III to the southern North Sea in January 2004, were investigated on a scale of 18 x 18 km to evaluate the range of spatial autocorrelations for the different variables under study. Semivariogram models obtained by geostatistical procedures indicated a distinct increase in variability for most variables with sampling distance. Only if samples are taken at distances above the estimated values for the practical range of the semivariogram can stochastic independence of the data be assumed. These are 6.6 km for Cd, 3.0 km for Ni and 5.2 km for Pb. Contour plots revealed a clear coincidence of high values for Cd, Ni and Pb with low shrimp mean body wet weight. Nevertheless, spatial autocorrelations were rather weak, since classical and geostatistical population estimates for the means and the 95% confidence intervals were in good agreement. The low detected concentrations of Pb in C. crangon were in good agreement with reported data for decapod crustaceans from other regions. For Zn reported values were distinctly below our 95% confidence intervals, while for Cu they were slightly above and for Cd distinctly above concentrations in C. crangon from this study. For Ni no comparative values exist. We conclude that with this integrated biomonitoring approach metal concentrations could be assessed more precisely and relations between biotic and abiotic variables could be evaluated.


Crangon crangon; decapod crustaceans; biomonitoring; metals; geostatistics; spatial analysis

Full Text:



AMAP. – 2005. Arctic Monitoring and Assessment Programme., Oslo, Norway.

Anonymous. – 2005. Chemikaliengesetz: Gesetz zum Schutz vor gefährlichen Stoffen. Anhang 1 (zu § 19a Abs. 1) – Grundsätze der guten Laborpraxis (GLP). In: C. Steinberg, H. Bernhardt, W. Calmano, H. Klapper and R.-D. Wilken (eds.), Handbuch angewandte Limnologie, Chapter IX-5, 21. Erg.Lfg. 4/05, pp. 1-32. ecomed, Landsberg am Lech.

Berghahn, R. – 1983. Untersuchungen an Plattfischen und Garnelen (Crangon crangon) im Eulitoral des Wattenmeeres nach dem Übergang zum Bodenleben. Helgol. Meeresunters., 36: 163-181. doi:10.1007/BF01983855

Berghahn, R. – 1996. Episodic mass invasions of juvenile gadoids into the Wadden sea and their consequences for the population dynamics of brown shrimp (Crangon crangon). Mar. Ecol. Pub. Staz. Zool. Napoli. 17: 251-260.

BLMP. – 2005. Bund/Länder-Messprogramm für die Meeresumwelt von Nord- und Ostsee. Bundesamt für Seeschifffahrt und Hydrographie;, Hamburg.

Bowman, A. and A. Azzalini. – 1997. Applied smoothing techniques for data analysis. Oxford University Press, New York.

Büttner, J.R., R. Borth, H.J. Boutwell, P.M.G. Broughton and R.C. Bowyer. – 1980. Approved recommendation (1978) on quality control in clinical chemistry. J. Clin. Chem. Clin. Biochem., 18: 78-88.

CCMA. – 2005. U.S. Mussel Watch Project. Center for Coastal Monitoring and Assessment; Silver Spring, Maryland, USA.

Cieluch, U., G. Charmantier, E. Grousset, M. Charmantier-Daures and K. Anger. – 2005. Osmoregulation, Immunolocalization of Na+/K+-ATPase, and Ultrastructure of Branchial Epithelia in the Developing Brown Shrimp, Crangon crangon (Decapoda, Caridea). Physiol. Biochem. Zool., 78: 1017-1025. doi:10.1086/432856 PMid:16228940

Clason, B. and G.-P. Zauke. – 2000. Bioaccumulation of trace metals in marine and estuarine amphipods: evaluation and verification of toxicokinetic models. Can. J. Fish. Aquat. Sci., 57: 1410-1422. doi:10.1139/cjfas-57-7-1410

Cressie, N.A.C. – 1991. Statistics for spatial data. John Wiley & Sons, Inc., New York.

Ehrich, S., S. Adlerstein, U. Brockmann, J. Floeter, S. Garthe, H. Hinz, I. Kröncke, H. Neumann, H. Reis, A.S. Sell, M. Stein, V. Stelzenmüller, C. Stransky, A. Temming, G. Wegner and G.-P. Zauke. – 2007. 20 years of the German Small-Scale Bottom Trawl Survey (GS BTS) : A review. Senckenbergiana marit., 37: 13-82.

Ehrich, S., S. Adlerstein, S. Götz, N. Mergardt and A. Temming. – 1998. Variation of meso scale fish distribution in the North Sea. ICES CM. 25.

Fernandes, P.G. and J. Rivoirard. – 1999. A geostatistical analysis of the spatial distribution and abundance of cod, haddock and whiting in North Scotland. In: J. Gomez-Hernandez, A. Soares and R. Froidevaux (eds.), Geoenv II - Geostatistics for Environmental Applications, pp. 201-212. Kluwer Academic Publisher, Dordrecht.

Hinz, H., I. Kröncke and S. Ehrich. – 2004. Seasonal and annual variability in an epifaunal community in the German Bight. Mar. Biol., 144: 735-745. doi:10.1007/s00227-003-1239-9

Isaaks, E.H. and R.M. Srivastava. – 1989. An introduction to applied geostatistics. Oxford University Press, Oxford.

Janke, K. _ 1999. Düne, Strand und Wattenmeer: Tiere und Pflanzen unserer Küsten. Franckh-Kosmos-Verlag, Stuttgart.

Jensen, K.T. and J.N. Jensen. – 1985. The importance of some epibenthic predators on the density of juvenile benthic macrofauna in the Danish Wadden Sea. J. Exp. Mar. Biol. Ecol., 89: 157-174. doi:10.1016/0022-0981(85)90124-8

Jung, K., V. Stelzenmüller and G.-P. Zauke. – 2006. Spatial distribution of heavy metal concentrations and biomass indices in Cerastoderma edule Linnaeus (1758) from the German Wadden Sea: An integrated biomonitoring approach. J. Exp. Mar. Biol. Ecol., 338: 81-95. doi:10.1016/j.jembe.2006.06.036

Jung, K.R. – 2007. Evaluation of spatial and temporal models to assess the bioaccumulation of trace metals in marine invertebrates. Ph.D. thesis, Univ. Oldenburg.

Kaluzny, S.P., S.C. Vega, T.P. Cardoso and A.A. Shelly. – 1998. S+ Spatial Stats User’s Manual for Windows and UNIX. Springer- Verlag, New York.

Leatherland, T.M., J.D. Burton, F. Culkin, M.J. McCartney and R.J. Morris. – 1973. Concentrations of some trace metals in pelagic organisms and of mercury in Northeast Atlantic Ocean water. Deep-Sea Res., 20: 679-685.

Livingston, R.J. – 1987. Field sampling in estuaries: the relationship of scale and variability. Estuaries, 10: 194-207. doi:10.2307/1351848

Matheron, G. – 1971. The theory of regionalized variables and their applications. Les cahiers du Centre de Morphologie Mathématique. Centre de Geostatistique, Fontainebleau, Paris.

Maynou, F. – 1998. The application of geostatistics in mapping and assessment of demersal resources. Nephrops norvegicus (L.) in the northwestern Mediterranean: a case study. Sci. Mar., 62: 117-133. doi:10.3989/scimar.1998.62s1117

Maynou, F., G.Y. Conan, J.E. Cortes, J.B. Company and F. Sarda. – 1996. Spatial structure and seasonality of decapod crustacean populations on the northwestern Mediterranean slope. Limnol. Oceanogr., 41: 113-125.

Neudecker, T. and U. Damm. – 2006. 2005: Rekord-Anlandungen an Nordseegarnelen (Crangon crangon L.) in Europa. Inf. Fischereiforsch., 53: 80-81.

Norén, K. and M. Lindegarth. – 2005. Spatial, temporal and interactive variability of infauna in Swedish coastal sediments. J. Exp. Mar. Biol. Ecol., 317: 53-68. doi:10.1016/j.jembe.2004.11.014

Petitgas, P. – 2001. Geostatistics in fisheries survey design and stock assessment: models, variances and applications. Fish and Fisheries, 2: 231-249. doi:10.1046/j.1467-2960.2001.00047.x

Petri, G. and G.-P. Zauke. – 1993. Trace-Metals in Crustaceans in the Antarctic Ocean. Ambio, 22: 529-536.

Prowe, F., M. Kirf and G.-P. Zauke. – 2006. Heavy metals in crustaceans from the Iberian Deep Sea Plain. Sci. Mar., 70: 271-279.

R Development Core Team. _ 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ridout, P.S., P.S. Rainbow, H.S.J. Roe and H.R. Jones. – 1989. Concentrations of V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As and Cd in mesopelagic curstaceans from the North East Atlantic Ocean. Mar. Biol., 100: 465-471. doi:10.1007/BF00394823

Rinderhagen, M., J. Ritterhoff and G.-P. Zauke. – 2000. Crustaceans as bioindicators. In: A. Gerhardt (ed.), Biomonitoring of Polluted Water - Reviews on Actual Topics, pp. 161-194. Trans Tech Publications - Scitech Publications, Environmental Research Forum Vol. 9, Uetikon-Zuerich.

Ritterhoff, J. and G.-P. Zauke. – 1997. Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Sci. Total Environ., 199: 255-270. doi:10.1016/S0048-9697(97)05457-0 PMid:9200868

Robertson, G.P. and D.W. Freckmann. – 1995. The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology, 765: 1425-32. doi:10.2307/1938145

Sokal, R.R. and N.L. Oden. – 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc., 10: 199-228. doi:10.1111/j.1095-8312.1978.tb00013.x

Stelzenmüller, V., S. Ehrich and G.-P. Zauke. –2005. Effects of survey scale and water depth on the assessment of spatial distribution patterns of selected fish in the northern North Sea showing different levels of aggregation. Mar. Biol. Res., 1: 375-387. doi:10.1080/17451000500361009

Stelzenmüller, V., S. Ehrich and G.-P. Zauke. – 2006. Analysis of meso scaled spatial distribution of dab Limanda limanda in the German Bight: does the type of fishing gear matter? Fish. Sci., 72: 95-104. doi:10.1111/j.1444-2906.2006.01122.x

Stelzenmüller, V., F. Maynou, S. Ehrich and G.-P. Zauke. – 2004. Spatial analysis of twaite shad, Alosa fallax (Lacepede, 1803), in the southern North Sea: Application of non-linear geostatistics as a tool to search for Special Areas of Conservation. Int. Rev. Hydrobiol., 89: 337-351. doi:10.1002/iroh.200310718

Thrush, S.F. – 1991. Spatial patterns in soft-bottom communities. Trends Ecol. Evol., 6: 75-79. doi:10.1016/0169-5347(91)90178-Z

Thrush, S.F., J.E. Hewitt, P.M.J. Herman and T. Ysebaert. – 2005. Multi-scale analysis of species-environment relationships. Mar. Ecol. Prog. Ser., 302: 13-26. doi:10.3354/meps302013

Thrush, S.F., J.E. Hewitt and R.D. Pridmore. – 1989. Patterns in the spatial arrangements of polychaetes and bivalves in intertidal sandflats. Mar. Biol., 102: 529-535. doi:10.1007/BF00438355

TMAP. – 2005. Trilateral Monitoring and Assessment Program. Common Wadden Sea Secretariat;, Wilhelmshaven, Germany.

Viegas, I., F. Martinho, J. Neto and M. Pardal. – 2007. Population dynamics, distribution and secondary production of the brown shrimp Crangon crangon (L.) in a southern European estuary. Latitudinal variations. Sci. Mar., 71(3): 451-460. doi:10.3989/scimar.2007.71n3451

Webster, R. and M. Oliver. – 2001. Geostatistics for environmental scientists. John Wiley, Chichester.

White, S.L. and P.S. Rainbow. – 1987. Heavy metal concentrations and size effects in the mesopelagic decapod crustacean Systellaspis debilis. Mar. Ecol. Prog. Ser., 37: 147-151. doi:10.3354/meps037147

Wilkinson, L. and M. Coward. – 2000. Linear Models I: Linear Regression. In: Anonymous (ed.), SYSTAT 10: Statistics I, pp. 399-430. SPSS Inc, Chicago, IL.

Wilkinson, L. and L. Engelman. – 2000. Descriptive statistics. In: Anonymous (ed.), SYSTAT 10: Statistics I, pp. 205-225. SPSS Inc, Chicago, IL.

Ysebaert, T. and P.M.J. Herman. – 2002. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Mar. Ecol. Prog. Ser., 244: 105-124. doi:10.3354/meps244105

Zauke, G.-P. and I. Schmalenbach. – 2006. Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Sci. Total Environ., 359: 283-294. doi:10.1016/j.scitotenv.2005.09.002PMid:16194562

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support