Scientia Marina, Vol 73, No 1 (2009)

Patterns of juvenile habitat use by the spider crab Maja brachydactyla as revealed by stable isotope analyses

Juan Freire
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña , Spain

Sirka Carabel
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña , Spain

Patricia Verísimo
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña , Spain

Cristina Bernárdez
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña , Spain

Centro de Ecología Costera, Centro Universitario de la Costa Sur, Universidad de Guadalajara

Luis Fernández
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña , Spain


Patterns of habitat use by spider crab juveniles, Maja brachydactyla, from two geographic areas on the NW coast of the Iberian Peninsula were studied through the analysis of carbon and nitrogen stable isotope relations in muscle and hepatopancreas. Main potential preys of spider crab juveniles in rocky and sandy habitats and different organic matter sources in coastal food webs were also analysed. Isotopic ratios showed no difference between rocky and sandy habitats. The use of carapace colour and epibiosis as an indicator of habitat use was not supported by our data. These results suggest that movements between the two habitats are much more frequent than suggested in previous studies. In the coastal food web, two main trophic compartments were identified according to their organic matter source: one based on plankton and seaweeds (rocky habitats), and one based on sedimentary particulate organic matter (sandy bottoms). By means of the model of Phillips and Gregg (2003), it was found that juveniles of Maja brachydactyla from both habitats consumed approximately two thirds of the preys in rocky habitats and one third in sedimentary habitats. The results indicate that in exposed environments large juveniles spend most of the time on sedimentary bottoms, where they find more refuge, moving frequently to nearby rocky substrates to feed.


coastal ecosystems; food webs; feeding; life history; marine crustaceans; stable isotopes; trophic level; energetic condition

Full Text:



Anger, K. and R.Y. Dawirs. – 1982. Elemental composition (C, N, H) and energy in growing and starving larvae of Hyas araneus (Decapoda, Majidae). Fish. Bull., 80: 419-433.

Anger, K., N. Laasch, C. Püschel and F. Schorn. – 1983. Changes in biomass and chemical composition of spider crab (Hyas araneus) larvae reared in the laboratory. Mar. Ecol. Prog. Ser., 12: 91-101. doi:10.3354/meps012091

Bernárdez, C., J. Freire and E. González-Gurriarrán. – 2000. Feeding of the spider crab Maja squinado in rocky subtidal areas of the Ría de Arousa (north-west Spain). J. Mar. Biol. Ass. U. K., 80: 95-102. doi:10.1017/S0025315499001605

Bligh, E.G. and W.F. Dyer. – 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917.

Bode, A. and M. Varela. – 1998. Primary production and phytoplankton in three Galician Rias Altas (NW Spain): seasonal and spatial variability. Sci. Mar., 62: 319-330. doi:10.3989/scimar.1998.62n4319

Bodin, N., F. Le Loc’h and C. Hily. – 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J. Exp. Mar. Biol. Ecol., 341: 168-175. doi:10.1016/j.jembe.2006.09.008

Burns, A. and K.F. Walker. – 2000. Biofilms as food for decapods (Atyidae, Palaemonidae) in the River Murray, South Australia. Hydrobiologia, 437: 83-90. doi:10.1023/A:1026555501638

Cabana, G. and J.B. Rasmussen. – 1994. Modelling food chain structure and contaminant bioaccumulation using stable N isotopes. Nature, 372: 255-257. doi:10.1038/372255a0

Cabanas, J.M., M.T. Nunes, M. L. Iglesias, N. González and R. Carballo.– 1987. Oceanografía de la bahía de La Coruña. Bol. Inst. Esp. Oceanogr., 4: 21-27

Carabel, S., E. Godínez-Domínguez, P. Verisimo, L. Fernández and J. Freire. – 2006. An assesment of simple processing methods for stable isotope analyses of marine foodwebs. J. Exp. Mar. Biol. Ecol., 336: 254-261. doi:10.1016/j.jembe.2006.06.001

Cocheret de la Morinière, E., B.J.A. Pollux, I. Nagelkerken, M.A. Hemminga, A.H.L. Huiskes and G. van der Velde. – 2003. Ontogenetic dietary changes of coral reef fishes in the mangroveseagrass- reef continuum: a stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser., 246: 279-289. doi:10.3354/meps246279

Corgos, A. –2004. Estrategia vital, estructura espacial y dinámica metapoblacional de la centolla Maja squinado (Decapoda: Majidae). Ph.D. thesis, Univ. A Coruña (

DeNiro, M.J. and S. Epstein. – 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197: 261-263. doi:10.1126/science.327543 PMid:327543

DeNiro, M.J. and S. Epstein – 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506. doi:10.1016/0016-7037(78)90199-0

Fernández, L., J. Parapar, E. González-Gurriarán and R. Muiño– 1998. Epibiosis and ornamental cover patterns of the spider crab Maja squinado on the Galician coast, Northwestern Spain: Influence of behavioural and ecological characteristics of the host. J Crust. Biol., 18: 728-737.

France, R.L. – 1995. Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar. Ecol. Prog. Ser., 124: 307-312. doi:10.3354/meps124307

Freire, J., C. Bernárdez, A. Corgos, L. Fernández, E. González-Gurriarán, M.P. Sampedro and P. Verisimo – 2002. Management strategies for sustainable invertebrate fisheries in coastal ecosystems of Galicia (NW Spain). Aquat. Ecol., 36: 41-50. doi:10.1023/A:1013350723445

Fry, B. – 2002. Stable isotopic indicators of habitat use by Mississippi River fish J. N. A. Benthol. Soc., 21: 676-685. doi:10.2307/1468438

Fry, B. and E.B. Sherr – 1984. £_13C measurements as indicators of carbon flow on marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47.

Fry, B. and T.J. Smith II. – 2002. Stable isotope studies of red mangrove and filter feeders from the Shark River Estuary, Florida. Bull. Mar. Sci., 70: 871-890.

Gnaiger, E. and G. Bitterlich. – 1984. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia, 62: 289-298. doi:10.1007/BF00384259

González-Gurriarán, E and J. Freire. – 1994. Movement patterns and habitat utilization in the spider crab Maja squinado (Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. J. Exp. Mar. Biol. Ecol., 184: 269-291. doi:10.1016/0022-0981(94)90009-4

González-Gurriarán, E., L. Fernández, J. Freire and R. Muiño.– 1998. Mating and role of seminal receptacles in the reproductive biology of the spider crab Maja squinado (Decapoda, Majidae). J. Exp. Mar. Biol. Ecol., 220: 269-285. doi:10.1016/S0022-0981(97)00109-3

Hansson, S., J.E. Hobbie, R. Elmgren, U. Larsson, B. Fry and S. Johansson. – 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology, 78: 2249-2257.

Hines, A.H., T.G. Wolcott, E. González-Gurriarán, J.L. González-Escalante and J. Freire. – 1995. Movement patterns and migrations in crabs: telemetry of juvenile and adult behaviour in Callinectes sapidus and Maja squinado. J. Mar. Biol. Ass. U.K., 75:27-42.

Hobson, K.A. – 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 120: 314-326. doi:10.1007/s004420050865

Hobson, K.A., J.F. Piatt and J. Pitocchelli. – 1994. Using stable isotopes to determine seabird trophic relationships. J. Animal Ecol., 63: 786-798. doi:10.2307/5256

Hobson, K.A., W.G. Ambrose Jr and P.E. Renaud. – 1995. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from £_13C and £_15N analysis. Mar. Ecol. Prog. Ser., 128: 1-10. doi:10.3354/meps128001

Jennings, S., O. Renones, B. Morales-Nin, N.V.C. Polunin, J. Moranta and J. Col. – 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser., 146: 109-116. doi:10.3354/meps146109

Kwak, T.J.and J.B. Zedler. – 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia, 110: 262-277. doi:10.1007/s004420050159

Lee-Thorp, J.A., J.C. Sealy and N.J. van der Merwe. – 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Arch. Sci., 16: 585-589. doi:10.1016/0305-4403(89)90024-1

Lorrain, A., Y.-M. Paulet, L. Chauvaud, N. Savoye, A. Donval and C. Scout. – 2002. Differential £_13C and £_15N signatures among scallop tissues: implications for ecology and physiology. J. Exp. Mar. Biol. Ecol., 275: 47-61. doi:10.1016/S0022-0981(02)00220-4

Michener, R.H. and D.M. Schell. – 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: K. Lajtha and R.H. Michener (eds.) Stable isotopes in ecology and environmental science, pp. 138-157. Blackwell Scientific Publication, Oxford.

Newell, R.I.E., N. Marshall, A. Sasekumar and V.C. Chong. – 1995. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar. Biol., 123: 595-606 doi:10.1007/BF00349238

Page, H. M. and M. Lastra. – 2003. Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis. Mar. Biol. 143: 519-532. doi:10.1007/s00227-003-1102-z

Parapar, J., L. Fernández, E. González-Gurriarán and R. Muiño.– 1997. Epiobisis and masking material in the spider crab Maja squinado (Decapoda: Majidae) in the Ría de Arousa (Galicia, NW Spain). Cah. Biol. Mar. 38: 221-234.

Peterson, B.J. and B. Fry. – 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18: 293-320. doi:10.1146/

Peterson, B.J., R.W. Howarth and R.H. Garritt. – 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science, 227: 1361-1363. doi:10.1126/science.227.4692.1361 PMid:17793771

Phillips, D.L. and J.W. Gregg. – 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136: 261-269. doi:10.1007/s00442-003-1218-3 PMid:12759813

Pinnegar, J.K. and N.V.C. Polunin. – 1999. Differential fractionation of £_13C and £_15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13: 225-231. doi:10.1046/j.1365-2435.1999.00301.x

Pinnegar, J.K. and N.V.C. Polunin. – 2000. Contributions of stableisotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia, 122: 399-409. doi:10.1007/s004420050046

Post, D.M. –2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83: 703-718.

Raikow, D.F. and S.K. Hamilton. – 2001. Bivalve diets in a Midwestern U.S. stream: a stable isotope enrichment study. Limnol. Oceanogr. 46: 514-522.

Rosón, G, F.F. Pérez, X.A. Alvarez-Salgado and F.G. Figueiras.– 1995. Variation of both thermohaline and chemical properties in an estuarine upwelling ecosystem: Ria de Arousa. I. Time evolution. Estuar. Coast. Mar. Sci. 41: 195-213.

Sánchez-Mata, A., M. Glemárec and J. Mora. – 1999. Physicochemical structure of the benthic environment of a Galician ría (Ría de Ares-Betanzos, north-west Spain). J. Mar. Biol. Ass. U.K. 79: 1-21. doi:10.1017/S0025315498000010

Sauriau, P.-G. and C.-K. Kang. – 2000. Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oléron Bay. Hydrobiologia, 440: 317-329. doi:10.1023/A:1004156102278

Tieszen, L.L., T.W. Boutton, K.G. Tesdahl and N.H. Slade. – 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of diet. Oecologia, 57: 32-37. doi:10.1007/BF00379558

Wada, E. and A. Hattori. – 1991. Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Boca Raton.

Wainright, S.C., M.J. Fogarty, R.C. Greenfield and B. Fry. – 1993. Long-term changes in the Georges Bank food web - trends in stable isotopic compositions on fish scales. Mar. Biol., 115: 481-493. doi:10.1007/BF00349847

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support