Does developmental mode influence distribution patterns of megabenthic gastropods from the Uruguayan shelf?


  • Alvar Carranza UNDECIMAR, Facultad de Ciencias
  • Fabrizio Scarabino Museo Nacional de Historia Natural y Antropología - Dirección Nacional de Recursos Acuáticos
  • Leonardo Ortega Dirección Nacional de Recursos Acuáticos



pelagic development, direct development, gastropods, Adelomelon, Zidona, Fusitriton, Cymatium, Thorson’s rule


We analyzed the effect of development mode (direct vs. pelagic development) on the spatial structure of a megabenthic gastropod assemblage at a regional scale. The research was carried out along the bathymetric, saline and thermal gradients generated by the interaction between the shelf topography, the freshwater discharge of Río de la Plata and the presence of oceanic water masses. Direct developers dominated in terms of number of species in the entire area and when the inner and outer shelves were considered separately. Species with pelagic development were not observed to be ecologically successful (i.e. have higher abundances) on the inner shelf, which suggests that high environmental variability may not necessarily favour this strategy. No patterns were found in the relative abundance of species in each developmental mode between the inner (i.e. < 50 m) and outer shelves. However, richness patterns of the two groups were differentially affected by environmental conditions. Species richness for direct developers was affected by mean annual temperature, bathymetry and longitude while pelagic developers showed evident trends in relation to temperature range and latitude. Further studies are necessary to derive general predictions concerning the relative advantages of each developmental type in relation to these gradients in ecological time scales and local or regional spatial scales.


Download data is not yet available.


Capítoli, R.R. and C. Bemvenuti. – 2004. Distribuição batimétrica e variaçôes de diversidade dos macroinvertebrados bentônicos da plataforma continental e talude superior no extremo sul do Brasil. Atlântica, 26: 27-43.

Carranza, A. – 2006. Large gastropods by-catch in the Hake fishery at the Argentinean- Uruguayan common fishing zone. Com. Soc. Malac. Urug., 9: 61 - 67.

Carranza, A. and M. Rodríguez. – 2007. On the benthic molluscs of Banco Inglés (Río de la Plata, Uruguay). Anim. Biodiv. Conserv., 30: 161-168.

Carranza, A., F. Scarabino, A. Brazeiro, L. Ortega and S. Martínez.– 2008a. Assemblages of megabenthic gastropods from Uruguayan and northern Argentinean shelf: Spatial structure and environmental controls. Cont. Shelf. Res., 28: 788-796. doi:10.1016/j.csr.2007.12.010

Carranza, A., F. Scarabino and L. Ortega. – 2008b. Distribution of large benthic gastropods in the Uruguayan continental shelf and Río de la Plata estuary. J. Coastal Res., 24: 161-168. doi:10.2112/05-0525.1

Correia, I.C.S., J.A. Villwock, F.I. Isla, J. López Laborde, J.M. Jackson, V.V. Furtado and L.J. Calliari - 1996. ATLAS. Morphology and sedimentology of the southwest Atlantic coastal zone and continental shelf from Cabo Frio (Brazil) to Península Valdéz (Argentina). Ponto UM/UFRGS-IG-CECO, Porto Alegre.

Emilsson, I. – 1961. The shelf and coastal waters off southern Brazil. Bol. Inst. Oceanogr. Univ. São Paulo, 11: 101-112.

Emlet, R.B. – 1995. Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea). Evolution, 49: 476-489. doi:10.2307/2410272

Framiñan, M.B. and O.B. Brown. – 1996. Study of the Río de la Plata turbidity front. Part I: spatial and temporal distribution. Cont. Shelf. Res.,16: 1259-1282. doi:10.1016/0278-4343(95)00071-2

Gage, J.D. and P.A. Tyler - 1991. Deep Sea Biology. A Natural History of Organisms at the Deep sea Floor. Cambridge University Press, Cambridge.

Gallardo, C.S. and P.E. Penchaszadeh. – 2001. Hatching mode and latitude in marine gastropods: revisiting Thorson’s paradigm in the southern hemisphere. Mar. Biol., 138: 547-552. doi:10.1007/s002270000477

Gaston, K.J. – 2003. The structure and dynamics of geographic ranges. Oxford University Press.

Guerrero, R.A., E.M. Acha, M.B. Framiñan and C.A. Lasta. – 1997a. Physical Oceanography of the Río de la Plata estuary, Argentina. Cont. Shelf. Res.,17: 727-742. doi:10.1016/S0278-4343(96)00061-1

Guerrero, R.A., C.A. Lasta, E.M. Acha, H.W. Mianzan and M.B. Framiñan. – 1997b. Atlas Hidrográfico del Río de la Plata, Buenos Aires, Argentina-Montevideo, Uruguay.

Hansen, T.A. – 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology, 6: 139-207.

Hastie, T. and R. Tibshirani. – 1990. Generalized additive models. Champan & Hall, London.

Havenhand, J.N. – 2001. Evolutionary ecology of larval types. In: L. McEdward, (eds.), Ecology of Marine Invertebrate Larvae, pp. 79-122. CRC Press, London.

Heads, M. – 2005. Towards a panbiogeography of the seas. Biol. J. Linn. Soc., 84: 675-723. doi:10.1111/j.1095-8312.2005.00466.x

Juanicó, M. and M. Rodríguez-Moyano. – 1976. Composición faunística de la comunidad de Mytilus edulis platensis d’Orbigny, 1846, ubicada a unas 55 millas al SE de La Paloma. Com. Soc. Malac. Urug., 4: 113-116.

Kaiser, P. – 1977. Beitrage zur Kenntnis der Voluten (Mollusca) in argentinisch-brasilianischen Gewassern (mit der Beschreibung zweier neuer Arten). Mittel. Hamburg. Zool. Mus. Inst., 74: 11-26.

Laptikhovsky, V. – 2006. Latitudinal and bathymetric trends in egg size variation: a new look at Thorson’s and Rass’s rules. Mar. Ecol., 27: 7-14. doi:10.1111/j.1439-0485.2006.00077.x

Mann, R. and J.M. Harding. – 2003. Salinity tolerance of larval Rapana venosa: implications for dispersal and establishment of an invading predatory gastropod on the North American Atlantic coast. Biol. Bull., 204: 96-103. doi:10.2307/1543499 PMid:12588748

Mileikovsky, S.A. – 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar. Biol., 10: 193-213. doi:10.1007/BF00352809

Olivier, S.R. and V. Scarabino. – 1972. Distribución ecológica de algunos moluscos recogidos por la expedición del “Walter Herwig” (R.F.A.) al Atlántico sudoccidental (1966). Rev. Bras. Biol., 32: 235-247.

Ortega, L. and A. Martínez. – 2007. Multiannual and seasonal variability of water masses and fronts over the Uruguayan shelf. J. Coastal Res., 23: 681-629. doi:10.2112/04-0221.1

Palma, A.T., E. Poulin, M.G. Silva, R.B. San Martín, C.A. Muñoz and A.D. Díaz. – 2006. Antarctic shallow subtidal echinoderms: is the ecological success of broadcasters related to ice disturbance? Polar Biol., 30: 343-350. doi:10.1007/s00300-006-0190-x

Pastorino, G., P.E. Penchaszadeh, L. Schejter and C. Bremec.– 2000. Rapana venosa (Valenciennes, 1846) (Mollusca: Muricidae): a new gastropod in south Atlantic waters. J. Shelfish Res., 19: 897-899.

Pearse, J.S., J.B. McClintock and I. Bosch. – 1991. Reproduction of Antarctic benthic marine invertebrates: Tempos, modes and timing. Am. Zool., 31: 65-80.

Pearse, J.S. and S.J. Lockhart. – 2004. Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep-Sea Res. Pt. II, 51: 1533-1549. doi:10.1016/j.dsr2.2004.06.023

Pechenik, J.A. – 1982. Ability of some gastropod egg capsules to protect against low-salinity stress. J. Exp. Mar. Biol. Ecol., 63: 195-208. doi:10.1016/0022-0981(82)90178-2

Pechenik, J.A. – 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser., 177: 269-297. doi:10.3354/meps177269

Potthoff, M., K. Johst and J. Gutt. – 2006. How to survive as a pioneer species in the Antarctic benthos: minimum dispersal distance as a function of lifetime and disturbance. Polar Biol., 29: 543-551. doi:10.1007/s00300-005-0086-1

Poulin, E., A.T. Palma and J.-P. Feral. – 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol. Evol.,17: 218-222. doi:10.1016/S0169-5347(02)02493-X

Quintero, R. – 1986. Contribución al estudio de la macrofauna de invertebrados bentónicos batiales del frente marítimo uruguayo. Tesis de Licenciatura, UDELAR.

Rass, T.S. – 1935. Geographische Gesetzmässigkeiten im Bau der Fischeier und Larven. Zoogeographica, 3: 90-95.

Rass, T.S. – 1986. Biogeographic rule of inverse relation between egg size and environmental temperature in poikilothermous animals. Trudy IOAN, 116: 152-168.

Rex, M.A. and A. Waren. – 1982. Planktotrophic development in deep-sea prosobranch snails from the Western North Atlantic. Deep-Sea Res., Pt A, 29: 171-184.

Rivadeneira, M. – 2005. Macroecología evolutiva de los bivalvos marinos de la costa Pacifica de Sudamerica. Ph. D. thesis, Pontificia Univ. Católica Chile.

Scarabino, F. – 2003. Ranella olearium (Linnaeus, 1758) (Gastropoda: Tonnoidea):confirmation of its presence in uruguayan waters. Com. Soc. Malac. Urug., 8: 215-217.

Scarabino, F., R. Menafra and P. Etchegaray. – 1999. Presencia de Rapana venosa (Valenciennes, 1846) (Gastropoda: Muricidae) en el Río de la Plata. Bol. Soc. Zool. Urug. (Actas V Jornadas Zool. Uruguay) 11 (Segunda Epoca).

Sverdrup, H.U., M. Johnson and R. Fleming. – 1942. The Oceans. Their physics, chemistry and general biology. Prentice Hall, New York.

Thomsen, H. – 1962. Masas de agua características del Océano Atlántico (parte Sudoeste). Servicio de Hidrografía Naval, Secretaría Marina, Buenos Aires.

Thorson, G. – 1950. Reproduction and larval ecology of marine bottom invertebrates. Biol. Rev., 25: 1-45. doi:10.1111/j.1469-185X.1950.tb00585.x




How to Cite

Carranza A, Scarabino F, Ortega L. Does developmental mode influence distribution patterns of megabenthic gastropods from the Uruguayan shelf?. scimar [Internet]. 2008Dec.30 [cited 2020Dec.1];72(4):711-9. Available from:




Most read articles by the same author(s)