
LARVAL TROPHODYNAMICS ON GEORGES BANK 99

INTRODUCTION

Spatially explicit individual-based models of
larval fish trophodynamics can be used to explore
the relative importance of biological and physical
variables on larval growth and survival (e.g. Hinck-
ley et al., 1996; Heath et al., 1998; Werner et al.,
1996). Conceptually, larvae in high growth and sur-

vival areas could make a greater contribution to the
recruiting population if these areas also have longer
retention time scales than poor growth and survival
areas. Alternatively, larvae in poor growth areas
could make a greater contribution if these areas
have longer retention time-scales than areas of good
growth which, however, experience high advective
through-flows. The problem is to determine the rel-
ative magnitudes of growth rates and retention
time-scales.
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SUMMARY: Using an individual-based model approach we consider trophodynamic effects on the growth and survival of
larval cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on Georges Bank during late winter/early spring.
These studies represent an extension of results described in Werner et al. (1996; Deep-Sea Res. II), wherein the effect of tur-
bulence-enhanced larval-prey contact rates increased the effective prey concentration resulting in growth of cod larvae con-
sistent with observed rates in the field. We reformulated the feeding of the larvae to include existing relationships between
maximum prey-length and larval-length and we examined: (i) larval search behaviour and its effect on encounter with prey,
(ii) the ability of larvae to pursue and capture prey in a turbulent environment, and (iii) the effect of turbulence on the dis-
persion of larvae in the vertical. We find that search behaviour, the effect of turbulence on pursuit and capture, and vertical
dispersion decrease the predicted larval growth rates compared to those observed in the earlier study. These results suggest
that larval feeding behaviour, and especially the ability of larvae to pursue encountered prey, could be an important input to
larval growth and survival models. The inclusion of turbulence in determining the position of passive larvae in the water
column allows the larvae to sample the entire water column, contributing to a decrease in the variance of the size of the lar-
vae over time. The ability of larvae to swim and aggregate in the vertical will be necessary to reproduce distributions
observed in the field.
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Our studies of larval cod and haddock on
Georges Bank (Fig. 1) have shown that predicted
survival and growth rates for cod larvae located
below the pycnocline, where the turbulence-
enhanced contact rates are greatest, are comparable
to those observed in the field (Werner et al., 1996).
The inclusion of spatially-variable and time-depen-
dent turbulence generated by winds and tides
increased prey contact rates two- to five-fold, effec-
tively increasing the prey concentration perceived
by larvae. Thus, the region of highest retention due
to circulation processes (Werner et al., 1993; Lough
et al., 1994) coincides with the region of highest
growth rates: shoalward of the 60 m isobath at sub-
surface depths of 25 m or greater. Despite the turbu-
lence-enhanced contact rates, haddock larvae
required five-fold higher prey densities to survive
than did cod larvae.

In the present study we use our modelling
approach to examine the sensitivity of larval cod
(Gadus morhua) and haddock (Melanogrammus
aeglefinus) growth and survival to representations of
the larval feeding environment on Georges Bank. In
particular we examine (i) larval behaviour in the deter-
mination of larval-prey contact rates, (ii) the effects of
turbulence on post-encounter behaviours (capture and
ingestion), and (iii) the effects of the turbulent disper-
sion on the vertical position of the larvae.

PHYSICAL MODEL FLOW FIELD

The three-dimensional, nonlinear, prognostic
(evolving baroclinic field), finite element hydrody-
namic model employed is that of Lynch et al.
(1996). The model operates in tidal time and uses
the quasi-equilibrium version of Mellor-Yamada
level 2.5 turbulence closure scheme (Mellor and
Yamada 1982; Galperin et al., 1988), by including
the turbulent kinetic energy (q2/2) and mixing length
(l) as hydrodynamic state variables that are func-
tions of position and time.

The circulation field we use corresponds to cli-
matological March-April conditions, consistent with
the spawning and early larval drift period of cod and
haddock on Georges Bank. The details of the com-
putation are described in Naimie (1996). Forcing
included the M2 tide, mean wind stress (of 0.0472
Pa toward 121.4 degrees clockwise from true
North), and an applied nudging boundary condition
at the surface –referenced to the climatological sur-
face density– for the evolving baroclinic field. Addi-
tionally, at open boundaries the low-frequency
(mean sea level set-up) and vertical structure of den-
sity are fixed at the climatological conditions (see
Naimie, 1995 and 1996). The depth-averaged flow
field (Fig. 2) shows the familiar clockwise pattern
around Georges Bank, including the tidally rectified
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FIG. 1. – George Bank bathymetry (m) and prey field sectors. The northern flank (NF), the eastern flank (EF), the southern flank (SF) and cen-
tral cap (CC) prey regions/sectors are outlined; the spawning grounds, located on the Northeast Peak, are indicated by the shaded square. The
outline of the Central Cap is defined by the 40 m isobath. The dashed line indicates the section along which values of turbulent kinetic energy
dissipation are show in Fig. 3. A time-history and vertical profile of the turbulent kinetic energy dissipation ε at Site I is show in Fig. 3.



northern flank jet, the southwestward drift along the
southern flank and the generally weak recirculation
in the Great South Channel during this season. The
Bank-wide depth-averaged turbulent kinetic energy
dissipation rate ε (W/Kg), a vertical section of ε
across the Bank, and a time-series at a station inside
the 60 m isobath are shown in Figure 3. These
results are generally in good agreement with Loder
et al. (1993) and Horne et al. (1996). 

For purposes of larval advection (i.e. particle
tracking) and trophodynamic calculations we
retained only the residual, M2 and M4 components
of velocity, and relevant turbulent quantities; those
components of velocity and turbulence at the M6
frequency do not affect our results significantly. The
effect of the wind is included in the mean circulation
and turbulence components. The particle (larval)
positions 20, 40 and 60 days post-spawn are shown
in Figure 4 for two cases: non-turbulent (as in Wern-
er et al., 1996) and turbulent dispersal of larvae in
the vertical (see Section 5.3 herein). Spawning is
assumed to occur on the Northeast Peak, and the lar-
vae drift passively with the circulation. Particles
were released over the Northeast Peak at 1, 10, 20,
30, 40 and 50 m in a square region 62.5 km on a side
(Fig. 1). At each horizontal level there were 121 par-
ticles equally spaced in an 11x11 grid, resulting in a
total of 726 particles per release. The egg-phase is

assumed to be 20 days long (Page and Frank, 1989).
At 20 days post-spawn the larvae hatch and tropho-
dynamic processes (feeding, growth, starvation)
begin. We consider trophodynamics only for the first
40 days of the larval period for a total simulation
time of 60 days: a 20-day egg-phase and a 40-day
larval-phase. We have not explicitly considered the
yolksac stage in our formulation; see Gallager et al.
(1996) and Quinlan et al. (1997) for studies on yolk-
sac larval feeding and growth.

PREY FIELD

Representative concentrations of zooplankton
prey and their distributions on Georges Bank for the
February-April time-period were determined from
the literature and assumptions detailed in Werner et
al. (1996). Briefly, Kane (1984) identified the vari-
ous life history stages of Pseudocalanus spp.,
Calanus finmarchicus, Oithona similis, and Cen-
tropages spp. as dominant components of larval cod
and haddock diets on Georges Bank. Our specifica-
tion of the prey field therefore concentrates on these
four taxonomic groups. Georges Bank was separated
into northern flank (NF), eastern flank (EF), southern
flank (SF) and central cap (CC; depths of less than 40
m) regions (Fig. 1) based on Davis (1984).
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FIG. 2. – Depth-averaged residual flow field from the circulation model for the March-April period. Adapted from Werner et al. (1996).



Table 1 summarises prey sizes and weights, and
assigned concentrations within each of the four
regions on Georges Bank for late-winter/early spring.
These distributions were prescribed as time-invariant
and vertically uniform within each region. Although
we recognise that this as an artificial constraint, it is
justified as a first simplifying assumption consistent
with the relatively small difference in regional abun-
dances of major prey items, as well as the absence of
persistent vertical stratification between February and

March-April. Additionally, we assumed that larval
fish feeding had no impact on prey abundance or dis-
tribution (e.g. Cushing, 1983). These are the same
prey fields estimates used in Werner et al. (1996).

In nature, plankton are patchily distributed at
small spatial scales. For example, in both calm and
turbulent conditions off Peru and California, Owen
(1989) found patches of plankton at scales of 0.2-2
m, and plankton abundance within the patches were
typically 2-4 times greater than outside the patches.
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FIG. 3. – Top panel (A): depth-averaged turbulent kinetic energy dissipation rate log10ε[ε(W/Kg)] at a point in the time during the M2 tidal
cycle (isobaths indicated by dotted lines); middle panel (B): vertical section of log10 ε[ε(W/Kg)] across the Bank from northern (NF) to sour-
thern flank (SF), along the transect indicated in Fig. 1 and time as in (A); bottom panel (C): vertical profil of the turbulent kinetic energy dis-
sipation rate log10ε[ε(W/Kg)]over two tidal cycles at Site I (Fig. 1) on the southern flank (the time series was constructed using the residual, 

M2 and M4 components).



In nearshore waters off Massachusetts, Davis et al.
(1991) found patches of copepods at scales of 20-30
cm. On Georges Bank the distribution of plankton at
such small scales is currently under study, but given
the presence of small-intermediate scale patchiness
in other systems (e.g. Jenkins, 1989) we expect that
plankton on the Bank will be patchily distributed at
similar spatial scales. Incze et al. (1996) found that
some stratified sites on Georges Bank had concen-
trations of nauplii four to sixteen times the integrat-
ed (0-50 m) abundance. Since the data in Table 1
were derived from towed plankton nets that do not
detect small scale patchiness, we feel that these con-
centrations may be low. To explore the sensitivity to
prey field specification, we increased the concentra-
tion of the four smallest prey classes in some of the
studies below.

TROPHODYNAMIC MODEL

The core of our model (described in Werner et
al., 1996) is the standard bioenergetic supply-
demand function, in which growth is represented as
the difference between the amount of food absorbed
by a larva and daily metabolic costs, (e.g. Beyer and
Laurence, 1981; Laurence 1985). The sequence of
the model computations remain as in Werner et al.
(1996), i.e. given (i) larval size at hatch, (ii) daily
metabolic costs and (iii) prey encountered, then (iv)
the prey ingested are estimated, (v) daily growth is
computed and compared to (vi) a minimum larval
size. If the size of a larva falls below this minimum
at any time, that larva is considered dead. We have
reformulated our approach in estimating the number
of prey encountered and the prey biomass ingested
[components (iii) and (iv)]; these are described next.
The formulations for components (i), (ii), (v) and
(vi) are as in Werner et al. (1996).

(a) Prey Encounters. Rothschild and Osborn
(1988) discussed the role of turbulence in affecting
(enhancing) encounter rates with planktonic prey.
Subsequent studies and reviews, (e.g. Sundby and
Fossum, 1990; MacKenzie and Leggett, 1991;
Muelbert et al., 1994; Werner et al., 1996; Alcaraz
et al., 1997; Marrasé et al., 1997), have enhanced
our understanding of the role of turbulence in fluid
flows, finding effective increases in contact rates of
2-10 in laboratory and field (wind- and tidally-dri-
ven) conditions.

In the calculations that follow, we will consider
cod (and haddock) larvae as pause-travel predators,
and use the relationship derived by MacKenzie and
Kiørboe (1995)

Ep-t(i) = 2/3 πR3 p(i) PF+ π R2p(i) (u2
prey+2ω2)0.5PF PD

(1)

to estimate the encounter rate (prey/sec). Here R is
the larval reactive distance (taken as 0.8 x body-
length of the larva), PF is the pause frequency
(#/sec), PD is the pause duration (sec), p(i) is the ith
prey concentration and uprey is the prey swimming
speed taken to be one body-length per second. Fol-
lowing MacKenzie and Kiørboe (1995), for larval
lengths of 6.1 mm or smaller we used (PF,PD) = (0.5
sec-1, 1.7 sec), whereas for larvae larger than 6.1
mm, we used (PF,PD) = (0.62 sec-1, 1.4 sec). Finally,

ω2 = 1.88(ε R)2/3 (2)

is the turbulent velocity (squared), where ε is the
rate of turbulent kinetic energy dissipation which is
obtained at every point in space and time throughout
the model domain (see Werner et al., 1996).

The number of ith prey category encountered per
day is obtained by accumulating over all ith prey
encountered (Ep-t) within each ∆t time step
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TABLE 1. – Egg and zooplankton prey type, mean size (length), mean weight (dry weight) and standard deviation (σ) of each size class, and 
assigned concentrations within each of the four regions on Georges Bank (northern flank, eastern flank, southern flank, central cap).

Prey Size (mm) Weight N.Flank E.Flank S.Flank C.Cap
Type Mean/σ (µgDW) #/liter #/liter #/liter #/liter

Eggs <0.13/0.005 1.60 2.14 2.14 2.14 2.14
Nauplii 0.28/0.05 1.20 1.08 12.30 6.36 12.78
C-I 0.42/0.05 1.10 0.05 0.49 0.22 0.62
C-II 0.52/0.05 1.82 0.05 0.32 0.24 0.35
C-III 0.62/0.05 2.89 0.02 0.08 0.22 0.12
C-IV 0.73/0.05 4.80 0.04 0.08 0.27 0.11
C-V 0.88/0.05 9.58 0.04 0.07 0.31 0.11
C-VI >0.88/0.05 16.67 0.18 0.11 0.24 0.06



(3)

where L is a day/night binary switch which is unity

during daylight hours and zero at night, and the (c,h)
subscript refers to cod or haddock. The fraction of
daylight hours is a function of latitude and day of the
year and is computed from Morse (1989).

N i L E i tc h c h, ( ) ( )
,

= ∑ −
24h

p t ∆
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FIG. 4. – Particle locations on George Bank at hatch (day 20 post-spawn), 40 days post-spawn and 60 days post-spawn. The trajectories shown
in the three left-most panels (A, B and C) were computed using the time-dependent non-turbulent velocity field. The trajectories shown in
the three right-most panels (D, E and F) were computed including the effect of turbulent “kicks” in the vertical (see Section 7). Isobaths 

and regions as in Fig. 1.



(b) Prey Biomass Ingested. Prey densities were
estimated as described in Section 3. However, some
sizes of these taxa are not consumed by larval cod
and haddock (Kane, 1984; Economou, 1991)
because prey whose width is greater than the mouth
gape cannot be ingested (e.g., Heath, 1993). In addi-
tion, prey behavior may modify the sizes of prey
consumed by larval cod and haddock. This size-
dependency is apparent from Economou’s (1991)
observations that the maximal widths of prey found
in larval stomachs are much less than the mouth
gape, and that maximal lengths and widths of prey
consumed increase with both larval length and
mouth gape. The observation that prey width is
much less than mouth size suggests that when prey
exceed a certain size (relative to larval size), prey
escape behaviour (possibly as a function of its
length) prevents capture (Heath, 1993). Hence when
estimating the abundance of prey suitable for con-
sumption by larval fishes it is necessary to exclude
certain prey sizes which may be present in the water
but which are not consumed.

In previous studies (Werner et al., 1996), we
externally imposed a restriction on the availability
of particular size classes consumed. This restriction
was defined by the proportions of particular size
fractions of prey found in larval stomachs (Kane,
1984). However, the size fractions observed by
Kane in his gut content analyses may not be constant
over time and for all locations on the bank (Lough
and Mountain, 1996) because of temporal and spa-
tial variability in prey size distributions (Buckley
and Lough, 1987). Hence, prey densities scaled
using Kane’s gut content size fractions could there-
fore underestimate the potential prey available for
consumption, particularly if larvae feed less selec-
tively when food abundance is low (Munk, 1995).

In the present study, the criterion we chose for
limiting the maximal size of prey consumed was
derived from the maximum prey-length to larval-
length relationships given by Economou (1991; see
Fig. 4 therein). These relations (Table 2) were then
used to restrict the abundance of potential prey for
the different sizes of larval cod and haddock. In a
similar fashion we used Economou’s (1991) esti-
mates of minimum prey length to derive relation-
ships between larval length and minimum prey
length. These relationships enabled us to exclude
small prey from abundance estimates as larvae grew.

Rather than specify a single size for each prey cat-
egory, we assumed the distribution of prey lengths to
be Gaussian with means and standard deviations as in
Table 1. The lengths of the entire population of a
given category were assumed to fall within the mean
length ±3σ. Those prey lengths outside the size range
defined by λ(c,h)min and λ(c,h)max (Table 2; Fig. 5) were
considered unavailable as prey. Therefore the avail-
able prey items N ć,h(i) in any given category are
some fraction of the total encountered Nc,h(i).

In summary, the model prey available to the lar-
vae were based on the maximum and minimum sizes
of prey found in larval stomachs. Given this size-
based restriction, we assume that larvae consume all
developmental stages of the four copepod taxa Kane
(1984) identified as significant components of the
larval diet on Georges Bank. In addition, we assume
that under low food conditions larvae feed relative-
ly unselectively with respect to prey size or taxa (i.e.
larvae ingest prey in amounts proportional to their
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TABLE 2. – Calculated relationships between total length of cod and
haddock larvae, and the minimum and maximum lengths of prey
found in their guts. Data source: Fig. 4 of Economou (1991). λ
denotes prey length (mm); L denotes larval body length (mm); r is
the coefficient of determination; and p is the level of significance, 

where n.s. denotes not-significant.

Species Larval Size
Range (mm) Model r2 p

Cod 6-14 λmin=0.16 n.s. >0.05
λmax=0.106L 0.56 <0.0001

Haddock 4-17 λmin=0.12 n.s. >0.05
λmax=0.211L-0.579 0.94 >0.05

Combined 4-17 λmin=0.00398L+0.09970 n.s. >0.05
cod and haddock λmax=0.193L-0.527 0.82 >0.0001

FIG. 5. – Maximal and minimal lengths of prey found in guts of
larval haddock and cod larvae as function of larval size. Relation-
ships are calculated from data presented in Economou (1991; Fig.
4 therein). The sloping lines (solid lines correspond to cod larvae,
dashed line to cod larvae) correspond to expresions for λ in Table
2; the prey lengths and ±3σ (standard deviations) for the 8 prey
(Table 1) are plotted (short vertical lines) three times for ease of 

reference



occurrence in the environment). The assumption
that larvae feed unselectively when food abundance
is low is supported by the observation that cod lar-
vae ingest a much larger size range of prey of the
same species when prey abundance is low than
when prey abundance is high (Munk, 1995).

The daily prey biomass Pc,h ingested by a cod or
haddock larva is a function of the number of avail-
able prey items encountered N ć,h(i)

(4)

where wp(i) is the dry weight (µg) of the ith prey cat-
egory (assumed constant within a prey category) and
s1c,h is the swallowing probability of cod and had-
dock larvae

s1c = 0.9[1 – 0.667e-0.0040(w
c
-w

c
min)] (5)

s1c = 0.9[1 – 0.778e-0.0045(w
h
-w

h
min)] (6)

determined empirically (Laurence, 1985), where
wc,h

min is the initial (minimal) observed dry weight at
hatch (µg) of the cod or haddock larva (taken from
Bolz and Lough, 1988).

RESULTS

In this section we describe the effects of turbu-
lence on encounter rates, capture success and larval
dispersion in the model. A brief discussion of the
relevant length scales used to estimate the effect of
turbulent velocities is provided.

P s N i w ic h c h c h p
i

, , , ( ) ( )= ′[ ]
=
∑ 1

1

8
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FIG. 6. – Post-hatch time history of cod larvae with Ff = 1:1 and pause-travel behaviour (Table 3, Case 1). Top panel, the percentage of lar-
vae alive (solid line) starved on-Bank (solid line with crosses) and advected off the Bank (solid line with open circles); second panel, the daily
size distribution (µg) for the live larvae on the Bank, the 15% per day growth curve, the death barrier and the mean daily weight of those live
lavae still on the Bank. Also shown are the horizontal distribution of the live larvae (bottom left panel) and their vertical distribution relative 

to the local bottom-depth (bottom right panel).



Turbulence and encounter rates

The survival and growth time-history for pause-
travel behaviour and Ff = 1:1 is shown in Figure 6,
and summarized in Table 3 (Case 1). The vertical
distribution of survivors is skewed to regions where
turbulence enhanced-contact rates are greatest, in
this case the bottom boundary layer. This general
result is as in Werner et al. (1996).

When the effect of turbulence on the number of
prey encountered is not included (by setting ω = 0 in
Eq. 1), no larvae survive (Table 3, Case 2). The
time-history of the turbulence-enhanced contact rate
for pause-travel larvae that survive the 40-day post
hatch simulation is shown in Figure 7 as the ratio of
encounters in the presence of turbulence relative to
encounters in he absence of turbulence. The
enhancement of prey encountered is as much as
five-fold for first-feeding larvae and decreases for
larger larvae to factors closer to 3. Note that these
larvae spend most of their time within the bottom
boundary layer where turbulence levels are greatest
(Fig. 3). As expected from Figure 7, if we increase
the concentration of the smallest prey items five-
fold (Ff = 5:1) in the absence of turbulence-
enhanced encounters (Table 3, Case 3), the larvae
survive.

No one single formulation has yet parameterised
the precise nature of small scale turbulence affecting
predator-prey encounters, and different formulations
may better represent different limiting cases
(Osborn, 1996). The definition of the appropriate
length scale to estimate the contribution of turbu-
lence to predator-prey contact rates (e.g. Eq. 2) is
still a matter of discussion (Dower et al., 1997). The
length scale has been variously defined as the aver-
age distance between prey particles (Sundby and

Fossum, 1990; MacKenzie and Leggett, 1991;
Sundby, 1995; Werner et al., 1996), the Kolmogorov
scale (Muelbert et al., 1994), the eddy separation
distance (Davis et al., 1991) and the larval fish reac-
tive distance (e.g. Evans, 1989; MacKenzie et al.,
1994; Denman and Gargett, 1995; Kiørboe and
MacKenzie, 1995; Visser and MacKenzie, 1998).

We contrasted the pause-travel formulation in
which the spatial scale for estimating turbulent
velocity is based on larval reactive distance (Case 4,
Table 3) to that of a cruise searcher in which the tur-
bulent velocity used to estimate the predator-prey
encounter rate is based on the mean prey separation
distance (as in Sundby and Fossum, 1990) (Case 7,
Table 3). No larvae survive in either case. In both
formulations, a doubling of the concentration of the
four smallest prey categories results in larval sur-
vivorship (see Case 5 and Case 8). However, there is
a quantitative difference: survivorship in Case 8 is
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TABLE 3. – Summary of percentage of live cod/haddock (c/h) larvae on Georges Bank at day 40, their mean weight (µg) at day 40, and their
mean relative depth (–zr = depth of larvae/local depth; –zr → 0 near surface, –zr → 1 near bottom) for cases with nomenclature as follows: encounter
formulation either pause-travel (P-T), or cruise (C) behaviours; length scale used for estimating turbulent velocity contribution: R for reactive
distance (Eq. 2) or 0.55 p-1/3 for mean prey separation distance (where p is prey concentration); Ff = 1:1 (mean prey concentration as in Table
1), or Ff = X:1 (X-fold increase of four smallest prey categories); δ expected capture success; M = Markov-based turbulent vertical dispersion.
Bolz and Lough (1988) measured mean weights of 40-day-old cod larvae of 2466 µg, and of 4160 µg for 40-day-old haddock.

Case Encounter Turbulent Encounter Ff δ M Day 40 Day 40 Day 40
# Formulation Velocity Scale % alive Mean µg –zr

1 c/h (P-T) ω ≠ 0 R 1:1 =1 no 7/0 2948/0 0.86/0
2 c/h (P-T) ω = 0 n.a. 1:1 =1 no 0/0 0/0 0/0
3 c/h (P-T) ω = 0 n.a. 5:1 =1 no 65/0 3524/0 0.49/0
4 c/h (P-T) ω ≠ 0 R 1:1 <1 no 0/0 0/0 0/0
5 c/h (P-T) ω ≠ 0 R 2:1 <1 no 33/0 2507/0 0.55/0
6 c/h (P-T) ω ≠ 0 R 2:1 <1 yes 50/0 1748/0 0.50/0
7 c/h (C) ω ≠ 0 0.55 p-1/3 1:1 <1 no 0/0 0/0 0/0
8 c/h (C) ω ≠ 0 0.55 p-1/3 2:1 <1 no 72/0 3648/0 0.48/0

FIG. 7. – Ratio of turbulence enhanced prey encounters (Eq. 1 with 
ω ≠ 0) to prey encountered in the absence of turbulence (Eq. 1 with
ω = 0) for seven selected larvae (dots) and the mean value (solid line).



twice that in Case 5 and growth rates in Case 8 are
greater than those observed in the field (Bolz and
Lough, 1988) or in Case 5.

Effect of turbulence on capture success

Models for the influence of small-scale turbulence
on larval fish feeding indicate that turbulence can
have an overall beneficial or detrimental effect on lar-
val fish ingestion, depending on the magnitude of the
turbulence and on larval behavior (Matsushita, 1992;
MacKenzie et al., 1994; Jenkinson, 1995; Kiørboe
and Saiz, 1995). A dome-shaped relationship is found
in which ingestion rates are maximal at intermediate
rather than high levels of turbulence; the reduction in
pursuit success in highly turbulent environments
negates the increase in encounter rate. The relation-
ship can be implemented by scaling the number of
prey encountered (Eq. 4) by the expected capture suc-
cess δ (see Eq. 27 in Kiørboe and Saiz, 1995). The
value of δ depends on the turbulent velocity (ω), the
larval reaction distance (R), and the reaction time tr.
Our specification of ω and R are as described in Sec-
tion (4a) above; we specify tr as follows.

Pursuit times for cod larvae pursuing prey have
been estimated by several authors. Browman (pers.
comm. cited in MacKenzie et al., 1994) observed
that 4 mm cod larvae required 1.7 s to pursue prey
whereas 6-7 mm cod larvae required 1.3 s to pursue
prey in experiments by Munk (1995). MacKenzie
and Kiørboe (2000) observed that cod larvae (mean
size 10.5 mm) required 1-10 s to pursue prey, and
that pursuit time depended on pursuit success and
turbulent velocity during the pursuit. No pursuit or
feeding behaviour data are available for haddock
larvae of any size. To estimate pursuit times for a
range of larval haddock and cod sizes, we used
Wanzenbock’s (1992) data for three species of fresh-
water larvae attacking live zooplankton prey (Ceri-
odaphnia reticulata Sars and Eucyclops serrulatus).
Mean pursuit time was calculated from each of the
three species’ size-time relations (see Fig. 1 in
Wanzenbock, 1992) at each of the larval sizes used
in Wanzenbock’s experiments. The overall pursuit
time-size relationship we derived from these data is

tr = 3.9 Lc,h
– 0.60 (7)

where Lc,h is the larval cod or haddock length in cen-
timeters, assuming that cod and haddock behave as
the freshwater larvae.

This relationship is valid for Wanzenbock’s lar-

vae in the size range 8.5-38.5 mm, and explained
76% of the variance. We note that if this relation-
ship were extrapolated back to the smaller sizes of
cod larvae used in the Browman and Munk experi-
ments, it would yield values nearly identical to
those reported by Browman and Munk. This sug-
gests that the pursuit times estimated by this rela-
tion may be reasonable approximations of pursuit
times for haddock and cod larvae. A plot of δ as a
function of turbulence dissipation rate ε for three
larval sizes is shown in Figure 8. For dissipation
ranges found on Georges Bank, values of δ below
0.5 can be expected for the smallest (< 4-5 mm)
larvae, and thus a proportional reduction in number
of prey ingested.

The inclusion of δ in the conditions of Case 1
(Table 3) resulted in no larval survival due to the
detrimental effect of turbulence on post-encounter-
capture success for larvae in these size ranges (Table
3, Case 4).

To partially offset δ’s detrimental effect, we
found that by doubling the concentration of the four
smallest prey categories specified in Table 1 (i.e. Ff
= 2:1; see Fig. 9 and Table 3, Case 5) cod larvae
would survive with growth rates comparable to
those in Case 1 and comparable to those observed in
the field, at least for cod.

Effect of turbulence on larval dispersion

We have extended our previous studies (Werner
et al., 1993, 1996) to consider the effect of random,
turbulent “kicks” that modify larval vertical distrib-
utions (see also Hannah et al., 1998). We follow the
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FIG. 8. – Expected capture success δ as a function of turbulence dis-
sipation rate ε for three size of larval fish. The vertical dashed lines 

delimit turbulence levels on George Bank for this study.



approach described by Legg and Raupach (1982)
wherein the Langevin equation is used to derive a
Markov equation for the vertical velocity of a parti-
cle (or larva) in a flow where the turbulence is inho-
mogeneous. The Langevin equation for the disper-
sion of particles is

(8)

where α=1/τl and τl is the Lagrangian integral time
scale (or auto-correlation time scale) estimated from
Nq = σ2

wτl, where Nq is the turbulent exchange coef-
ficient (see Galperin et al., 1988), σw is the
Lagrangian velocity variance (σw

2 = 0.3q2/2); λ =
σw(2/τl)

1/2; ξ(t) is Gaussian noise of zero mean and

unit variance; and F = ∂(σw
2) / ∂z is a term involving

the gradient in the turbulent velocity variance.
The Markov chain for wn+1, the turbulent vertical

velocity at time step n+1, becomes

wn+1 = an wn + bn σwn ξn + Cn (9)

where an = exp(-∆t/τln), bn = [1-exp(-2∆t/τln)]1/2, 
Cn = (F/α)[1-exp(-∆t/τln)], and a ∆t = 1 minute was
used. The computed values of τl were of O(300) sec
(with a standard deviation of ±150 sec). With turbu-
lent velocity kicks of ±1 cm/s (within a standard
deviation of zero) turbulent vertical eddy motions of
1.5 to 4 meters are implied.

If the dispersal process is not treated in the above
manner, the dispersal of neutrally buoyant particles

dw

dt
w t F= − + +α λξ( )
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FIG. 9. – As in Figure 6, but Ff = 2:1 and including δ, the effect of turbulence on the ability of larvae to pursue and capture prey that are 
encountered (Table 3, Case 6).



in inhomogeneous turbulent fields can lead to unre-
alistic aggregations (e.g. Legg and Raupach, 1982;
Thomson, 1987; and Holloway, 1994). One of the
criteria that must be met is that an initially uniform
distribution of particles must remain uniformly dis-
tributed over time, i.e. spatial non-uniformities of
turbulence intensity cannot “un-mix” an initially
well mixed situation. Even in a stratified case, i.e. in
the presence of a pycnocline, if there is an initially
well mixed distribution of particles, they should
remain well mixed over time. Those particles that
are initially in the upper (lower) layer will sample
mainly the upper (lower) layer, with a finite proba-
bility of being “kicked” into the pycnocline. Those
particles that are initially in the pycnocline, where
turbulence is decreased, will remain in the pycno-
cline region for longer periods, albeit with a finite
probability of being “kicked out” of the pycnocline.

Hence, some particles in stratified cases, initially in
the upper (lower) layer, will make it across the pyc-
nocline to the lower (upper) layer. In the end, the net
flux of (passive, neutrally buoyant) particles through
any depth level should be close to zero, resulting in
no net accumulation (or un-mixing) of particles.

In the present set of simulations it is essential to
include F, the gradient in the turbulent velocity
variance. If this term is ignored, particles (larvae)
that are released unformily over depth are “kicked
out” of the bottom layer (where tidal turbulence is
strongest) and are unrealistically accumulated in
the surface layers of the water column. A compar-
ison of the trajectories of a particular larva (with-
out turbulent kicks, with turbulent kicks, and with
turbulent kicks computed without the term F) is
shown in Figure 10; the mean depth over the 40-
day larval period was –38 m for the non-turbulent
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FIG. 10. – Time-history of hourly vertical positions during days 25-35 post-spawn for larva #350. Top panel: without turbulent “kicks”; middle
panel: with the inclusion of vertical “kicks” without the term F in Eq. 12; and bottom panel: with the inclusion of vertical turbulent “kicks” as 

in Eq. 12. The horizontal lines in the middle and bottom panels indicate the mean depth over the 10-day time period.



trajectory, -23 m for the turbulent trajectory with-
out the gradient in the turbulent velocity variance
(F), and –36 m for the turbulent trajectory comput-
ed using Equation 8.

The survival and growth time-history as in Case
5 and including the effect of turbulent kicks on the
computed larval trajectories is shown in Figure 11
and summarised in Table 3, Case 6. This simulation
resulted in a population of “average” larvae with
reduced variance in size. In the absence of vertical
dispersion, the mean length of the larvae at day 40
in Figure 9 is 13.1 mm (± 1.6 mm), or in terms of
dry weight 2507 µg (± 901). With vertical disper-
sion (Fig. 11) the mean larval length is 12.1 mm (±
1.10 mm), or 1748 µg (± 491) in terms of weight.
This arises because individual larvae sample the

entire water column rather than remaining fixed at
particular depths.
SUMMARY AND DISCUSSION

We examined the effect of turbulence both on
predator-prey contact rates (MacKenzie and Kiør-
boe, 1995) and on the ability of larvae to pursue and
capture prey once they are encountered (Kiørboe
and Saiz, 1995; MacKenzie and Kiørboe, 2000).
These simulations show that larvae would not sur-
vive on Georges Bank (Table 3, Case 4) using the
food concentrations determined by large-scale
plankton samplers as reported by Davis (1984) and
Laurence (1985). This result assumes that the larval
diet consists of copepod nauplii and copepodites.
However, by doubling the concentration of prey in
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the four smallest prey size-classes, and allowing for
turbulence-dependent pursuit success, we obtained
a larval survivorship for cod and growth rates (Fig.
9; Case 5, Table 3) comparable to those observed in
the field (Bolz and Lough, 1988). These increased
zooplankton concentrations are well within the
range of temporal and spatial variability that has
been reported for Georges Bank (e.g. CV = 40-
121% for three different sites, Buckley and Lough
1987; see also Davis et al., 1992 and Incze et al.,
1996), and also within the range observed inside
finescale patches of microzooplankton in turbulent
and calm environments (Owen, 1989). It seems
likely, therefore, that some larval fish on Georges
Bank experience local densities of prey at least two-
fold higher than the mean concentrations specified
in Table 1. If this supposition is true, factors con-
trolling the abundance of prey, and the ability of lar-
vae to locate regions of aggregated prey, should be
important to larval survival. 

Our finding that modelled cod and haddock lar-
vae cannot survive on Georges Bank (at averaged
prey concentrations) is also partly due to the detri-
mental effects of moderate to high turbulence on lar-
val feeding success. In particular, pursuit success is
predicted to decrease from ca. 90% to 10% in the
dissipation rate range 10-7-10-5 m2 s-3 (Kiørboe and
MacKenzie, 1995). These predictions are supported
by direct laboratory observations of cod larvae prey-
ing on live copepod nauplii and copepodites
(MacKenzie and Kiørboe, 2000) which showed that
pursuit success declined according to theoretical
predictions (MacKenzie et al., 1994; Kiørboe and
Saiz, 1995). Notably this range (10-7-10-5 m2 s-3),
and higher values, of turbulence are typically found
on large areas of Georges Bank (Fig. 3). As a result
much of the positive effect of turbulence on
encounter rates (Rothschild and Osborn, 1988;
Sundby et al., 1994; MacKenzie and Kiørboe, 1995)
is offset by negative effects on pursuit ability, and
vice versa.

We considered the effect of larval dispersal in the
water column due to turbulent motions. Our results
(Figs. 10 and 11) suggest that turbulence allows pas-
sive (non-swimming, neutrally-buoyant) larvae to
sample the entire water column several times over a
40-day period. In other words, larvae that were
released in the top (bottom) layers will, through tur-
bulent kicks, be “bumped” to the bottom (top), then
back to the top (bottom), etc. The standard deviation
of the model turbulent velocities that larvae
encounter is of the order of ±1 cm/s, and hence a

larva that is 5-7 mm in length, if swimming at a
body-length per second should be able to sustain its
position or even overcome the turbulent “kick”. In
our case, sampling the entire feeding environment in
the vertical results in a reduction in the variance of
the larval sizes at the end of 40 days.

Previous studies have described the general two-
layer circulation of Georges Bank and found that
larvae located in the lower water column and near
bottom have an increased probability of remaining
on the Bank (e.g. Werner et al., 1993). However,
including this turbulent dispersion effect suggests
that passive larvae will spend more time in the mid-
dle and upper water column where they may be at
higher risk of advection off the Bank due to this
two-layer circulation and occasional wind or storm
events (e.g. Lough et al., 1994). Including the effect
of behaviour (e.g. active vertical migration) and the
ability to aggregate (e.g. Lough, 1984; Buckley and
Lough, 1987; Lough and Potter, 1993; Lough and
Mountain, 1996) will be critical to modelling verti-
cal distributions and subsequent horizontal trans-
ports observed in the field.

While these results are encouraging, we recog-
nise that the system is much more complex than that
portrayed in our study. For example, we have had to
extrapolate several biological results obtained with
other species and sizes of larvae estimated in calm
water experiments to cod and haddock larvae in tur-
bulent water. In addition, we have approximated the
distribution of prey both spatially and temporally by
specifying only variability at large horizontal scales
(i.e. between the four regions on the Bank; Fig. 1),
even though variability at smaller scales exists
(Davis et al., 1992; see also the model-based study
of Lynch et al., 2000). We have also assumed that
larvae do not feed until the yolksac has been fully
absorbed, although it is evident that cod larvae
ingest phytoplankton (Lough and Mountain, 1996),
ciliates and other microzooplankton during and after
yolksac absorption (Last, 1978; van der Meeren and
Næss, 1993; Gallager et al., 1996; Quinlan et al.,
1997). By excluding these alternate prey, we have
probably disadvantaged our model larvae compared
to those in nature. These extrapolations and simpli-
fications were necessary due to a lack of data for cod
and haddock, but they enabled us to conduct sensi-
tivity analyses to identify critical inputs worthy of
further investigation.

A number of other areas deserve further study
but are not part of this model. These include: (i) lar-
val vertical migration; (ii) light-limitations on
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encounter rates in deep water (Huse, 1994; Van
Keuren and Gifford, 1996; Fiksen et al., 1998;
Grønkjær and Wieland 1997); (iii) effect of turbu-
lence on metabolic rates and growth efficiencies
(Saiz and Alcaráz, 1992; Saiz et al., 1992; Dower et
al., 1997); (iv) temperature effects on growth (Buck-
ley and Lough, 1987; Leising and Franks, 1999;
Buckley et al., 2000); and (v) the inclusion of preda-
tors as a possible source of size-selective mortality
(e.g. Madin et al., 1996). Our conclusions on feed-
ing and survival must therefore be regarded as pre-
liminary until additional evidence becomes avail-
able from field, modelling and laboratory studies of
the feeding and growth of larval fishes in environ-
ments with different levels of turbulence.

Linking larval fish trophodynamics to dynamic
prey fields is a necessary next step in this research.
At the same time, the added complexity of more
realistic prey distribution will invite advances in
approaches to determine behaviour. Externally
imposed (and/or passive) behaviours will not make
sense in view of the added detail of the feeding envi-
ronment and will probably be replaced by model-
derived behaviours that include components max-
imising some biological trait, such as reproductive
value. Dynamic programming methods and genetic
algorithm approaches allow organisms to “find”
optimal habitats by balancing risks of predation,
growth and advective loss (Giske et al., 1994; Fik-
sen and Giske, 1995; Fiksen et al., 1998; Huse and
Giske, 1998).

Many previous coupled physical-biological mod-
els have stressed the importance of vertical position
in terms of retention and transport (e.g. see the
review by Boehlert and Mundy, 1988). In the pre-
sent paper, as in Werner et al. (1996), we have seen
that larval position in the water column also affects
larval feeding success, since turbulence, which
enhances encounter rates and affects the probability
of capture, is a function of depth. Furthermore, we
have noted the sensitivity of growth and survival to
larval behavior and to the choice of the turbulent
length scale. These results underscore important
issues in trophodynamic modelling that will require
refinement beyond what we have presented. Our
long-term objective is to identify realistic combina-
tions of circulation components and prey-field struc-
tures that can reproduce the observed range of
growth and survival rates, and to evaluate the rela-
tive sensitivity of cod and haddock larvae to aggre-
gated prey distributions and spatially and temporal-
ly heterogeneous (turbulent) flow fields. We antici-

pate the generation of dynamic prey fields and mod-
ification of the larval individual-based-model to
include many of the features mentioned in this dis-
cussion. Despite the limitations associated with the
model, it does provide a framework within which a
number of interesting questions can be explored and
new data from laboratory and field experiments can
be evaluated.

Lastly, the time of year we have considered is
late winter/early spring, which is generally weakly
stratified. The onset of stratification in late
April/early June will result in warmer temperatures
which will stimulate growth rates, increased plank-
ton production at both the primary and secondary
levels, and suppression of turbulence in the vicinity
of the pycnocline where larvae and prey may active-
ly aggregate and form patches due to behaviour or
buoyancy effects. These net increases in prey con-
centration and patchiness (observed by Buckley and
Lough, 1987 and Incze et al., 1996) appear to be
necessary to achieve field growth rates of cod and
(especially) haddock.
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